Skip to main content
Log in

Biological Activities and Biocompatibility Properties of Eu(OH)3 and Tb(OH)3 Nanorods: Evaluation for Wound Healing Applications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Rare earth elements have shown promising results in both bio-imaging and therapy applications due to their superior magnetic, catalytic, and optical properties. In recent years, since lanthanide-based nanomaterials have effective results in wound healing, it has become necessary to investigate the different properties of these nanoparticles. The aim of this study is to investigate the antimicrobial, antibiofilm, and biocompability of Eu(OH)3 and Tb(OH)3 nanorods, which have a high potential by triggering angiogenesis and providing ROS activity, especially in wound healing. For this purpose, nanorods were obtained by the microwave-assisted synthesis method. Structural characterizations of Eu(OH)3 and Tb(OH)3 nanorods were performed by FT-IR, XRD, and TG–DTA methods, and morphological characterizations were performed by SEM–EDX. Microorganisms that are likely to be present in the wound environment were selected for the antimicrobial activities of the nanorods. The highest efficiency of nanorods with the disc diffusion method was shown against Pseudomonas aeruginosa ATCC 27,853 and Candida albicans ATCC 10,231 microorganisms. One of the problems frequently encountered in an infected wound environment is the formation of bacterial biofilm. Eu(OH)3 nanorods inhibited 77.5 ± 0.43% and Tb(OH)3 nanorods 76.16 ± 0.60% of Pseudomonas aeruginosa ATCC 27,853 biofilms. These results show promise for the development of biomaterials with superior properties by adding these nanorods to wound dressings that will be developed especially for wounds with microbial infection. Eu(OH)3 nanorods are more toxic than Tb(OH)3 nanorods on NCTC L929 cells. At concentrations of 500 µg/ml and above, both nanorods are toxic to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fernandez V (2017) Rare-earth elements market: A historical and financial perspective. Resour Policy 53:26–45. https://doi.org/10.1016/j.resourpol.2017.05.010

    Article  Google Scholar 

  2. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90. https://doi.org/10.1038/am.2013.88

    Article  CAS  Google Scholar 

  3. Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, Guilherme LR (2016) Rare earth elements in the soil environment. Curr Pollut Rep 2:28–50. https://doi.org/10.1007/s40726-016-0026-4

    Article  CAS  Google Scholar 

  4. Liu W, Wang M, Cheng W, Niu W, Chen M, Luo M, Xie C, Leng T, Zhang L, Lei B (2021) Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis. Bioact Mater 6:721–728. https://doi.org/10.1016/j.bioactmat.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  5. Ohlsson N, Mohan RK, Kröll S (2002) Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt Commun 201:71–77. https://doi.org/10.1016/S0030-4018(01)01666-2

    Article  CAS  Google Scholar 

  6. Escudero A, Becerro AI, Carrillo-Carrión C, Nunez NO, Zyuzin MV, Laguna M, González-Mancebo D, Ocaña M, Parak WJ (2017) Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics 6:881–921. https://doi.org/10.1515/nanoph-2017-0007

    Article  CAS  Google Scholar 

  7. Hinklin TR, Rand SC, Laine RM (2008) Transparent, polycrystalline upconverting nanoceramics: towards 3-D displays. Adv Mater 20:1270–1273. https://doi.org/10.1002/adma.200701235

    Article  CAS  Google Scholar 

  8. Wu M, Xue Y, Li N, Zhao H, Lei B, Wang M, Wang J, Luo M, Zhang C, Du Y, Yan C (2019) Tumor-microenvironment-induced degradation of ultrathin gadolinium oxide nanoscrolls for magnetic-resonance-imaging-monitored, activatable cancer chemotherapy. Angewandte Angew Chem Int Ed 58:6880–6885. https://doi.org/10.1002/anie.201812972

    Article  CAS  Google Scholar 

  9. Luo M, Xu L, Xia J, Zhao H, Du Y, Lei B (2020) Synthesis of porous gadolinium oxide nanosheets for cancer therapy and magnetic resonance imaging. Mater Lett 265:127375. https://doi.org/10.1016/j.matlet.2020.127375

    Article  CAS  Google Scholar 

  10. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989. https://doi.org/10.1039/b809132n

    Article  CAS  PubMed  Google Scholar 

  11. Bünzli JCG, Eliseeva SV (2013) Intriguing aspects of lanthanide luminescence. Chem Sci 4:1939–1949. https://doi.org/10.1039/C3SC22126A

    Article  Google Scholar 

  12. Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52:3584–3600. https://doi.org/10.1002/anie.201208196

    Article  CAS  Google Scholar 

  13. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270. https://doi.org/10.1021/cr2004103

    Article  CAS  PubMed  Google Scholar 

  14. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–1854. https://doi.org/10.1039/C0AN00144A

    Article  CAS  PubMed  Google Scholar 

  15. Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5:8488–8505. https://doi.org/10.1021/nn202378b

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6:2781–2795. https://doi.org/10.1002/smll.201000418

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958. https://doi.org/10.1039/C3CS60060B

    Article  CAS  PubMed  Google Scholar 

  18. Yin J, Yu J, Ke Q, Yang Q, Zhu D, Gao Y, Guo Y, Zhang C (2019) La-doped biomimetic scaffolds facilitate bone remodelling by synchronizing osteointegration and phagocytic activity of macrophages. J Mater Chem B 7:3066–3074. https://doi.org/10.1039/C8TB03244K

    Article  CAS  Google Scholar 

  19. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150. https://doi.org/10.1038/nnano.2006.91

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Chen H (2016) Yb3+/Ho3+ co-doped apatite upconversion nanoparticles to distinguish implanted material from bone tissue. ACS Appl Mater Interfaces 8:27458–27464. https://doi.org/10.1021/acsami.6b05514

    Article  CAS  PubMed  Google Scholar 

  21. Zhao PP, Hu HR, Liu JY, Ke QF, Peng XY, Ding H, Guo YP (2019) Gadolinium phosphate/chitosan scaffolds promote new bone regeneration via Smad/Runx2 pathway. Chem Eng J 359:1120–1129. https://doi.org/10.1016/j.cej.2018.11.071

    Article  CAS  Google Scholar 

  22. Nethi SK, Barui AK, Bollu VS, Rao BR, Patra CR (2017) Pro-angiogenic properties of terbium hydroxide nanorods: molecular mechanisms and therapeutic applications in wound healing. ACS Biomater Sci Eng 3:3635–3645. https://doi.org/10.1021/acsbiomaterials.7b00457

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Z, Wang Q, Zhang CC, Gao J (2016) Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe. Dalton Trans 45:7435–7442. https://doi.org/10.1039/C6DT00156D

    Article  CAS  PubMed  Google Scholar 

  24. Patra CR, Bhattacharya R, Patra S, Vlahakis NE, Gabashvili A, Koltypin Y, Gedanken A, Mukherjee P, Mukhopadhyay D (2008) Pro-angiogenic properties of europium (III) hydroxide nanorods. Adv Mater 20:753–756. https://doi.org/10.1002/adma.200701611

    Article  CAS  Google Scholar 

  25. Niu W, Guo Y, Xue Y, Wang M, Chen M, Winston DD, Cheng W, Lei B (2021) Biodegradable multifunctional bioactive Eu-Gd-Si-Ca glass nanoplatform for integrative imaging-targeted tumor therapy-recurrence inhibition-tissue repair. Nano Today 38:101137. https://doi.org/10.1016/j.nantod.2021.101137

    Article  CAS  Google Scholar 

  26. Luo M, Shaitan K, Qu X, Bonartsev AP, Lei B (2022) Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl Mater Today 26:101304. https://doi.org/10.1016/j.apmt.2021.101304

    Article  Google Scholar 

  27. Xin H, Li FY, Shi M, Bian ZQ, Huang CH (2003) Efficient electroluminescence from a new terbium complex. J Am Chem Soc 125:7166–7167. https://doi.org/10.1021/ja034087a

    Article  CAS  PubMed  Google Scholar 

  28. Sun L, Jiang S, Marciante JR (2010) All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt Express 18:5407–5412. https://doi.org/10.1364/OE.18.005407

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Lu Y, Zhang J, Hu X, Yang Z, Guo Y, Wang Y (2019) A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly (vinyl alcohol)–alginate hydrogel for treating infected chronic wounds. J Mater Chem B 7:538–547. https://doi.org/10.1039/C8TB02679C

    Article  PubMed  Google Scholar 

  30. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–30. https://doi.org/10.1038/nm0195-27

    Article  CAS  PubMed  Google Scholar 

  31. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM (1999) Age-dependent impairment of angiogenesis. Circulation 99:111–120. https://doi.org/10.1161/01.CIR.99.1.111

    Article  CAS  PubMed  Google Scholar 

  32. Forlee M (2011) What is the diabetic foot? The rising prevalence of diabetes worldwide will mean an increasing prevalence of complications such as those of the extremities. CME 29:4–8. https://hdl.handle.net/10520/EJC63898

  33. Icks A, Scheer M, Morbach S, Genz J, Haastert B, Giani G, Glaeske G, Hoffmann F (2011) Time-dependent impact of diabetes on mortality in patients after major lower extremity amputation: survival in a population-based 5-year cohort in Germany. Diabetes Care 34:1350–1354. https://doi.org/10.2337/dc10-2341

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barshes NR, Sigireddi M, Wrobel JS, Mahankali A, Robbins JM, Kougias P, Armstrong DG (2013) The system of care for the diabetic foot: objectives, outcomes, and opportunities. Diabet Foot Ankle 4:21847. https://doi.org/10.3402/dfa.v4i0.21847

    Article  Google Scholar 

  35. World Health Organization (2016) Global Report on Diabetes. Geneva World Health Organization Press, Geneva, Switzerland

    Google Scholar 

  36. Vanwijck R (2001) Surgical biology of wound healing. Bull Mem Acad R Med Belg 156:175–184

    CAS  PubMed  Google Scholar 

  37. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6. https://doi.org/10.1126/scitranslmed.3009337

  38. Berlanga M, Guerrero R (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Factories 15:1–11. https://doi.org/10.1186/s12934-016-0569-5

    Article  CAS  Google Scholar 

  39. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. https://doi.org/10.1016/S0966-842X(00)01913-2

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Xu T, Tu Z, Dai W, Xue Y, Tang C, Gao W, Mao C, Lei B, Lin C (2020) Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 10:4929. https://doi.org/10.7150/thno.41839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, Guo Y (2019) Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano 13:10279–10293. https://doi.org/10.1021/acsnano.9b03656

    Article  CAS  PubMed  Google Scholar 

  42. Xi Y, Ge J, Guo Y, Lei B, Ma PX (2018) Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 12:10772–10784. https://doi.org/10.1021/acsnano.8b01152

    Article  CAS  PubMed  Google Scholar 

  43. Christensen GD, Simpson WA, Baddour YJJ, LM, Barrett FF, Melton DM, Beachey EH, (1985) Adherence of coagulase negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Cli Microbiol 22:996–1006

    Article  CAS  Google Scholar 

  44. Indu PK, Smitha R (2002) Penetration enhancers and ocular bioadhesive: two new avenues for ophathalmic drug delivery. Drug Devel Ind Pharm 28:353–369. https://doi.org/10.1081/DDC-120002997

    Article  Google Scholar 

  45. Mu Q, Wang Y (2011) A simple method to prepare Ln (OH) 3 (Ln= La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties. J Alloys Compd 509:2060–2065. https://doi.org/10.1016/j.jallcom.2010.10.141

    Article  CAS  Google Scholar 

  46. Kang JG, Jung Y, Min BK, Sohn Y (2014) Full characterization of Eu (OH) 3 and Eu2O3 nanorods. Appl Surf Sci 314:158–165. https://doi.org/10.1016/j.apsusc.2014.06.165

    Article  CAS  Google Scholar 

  47. Sohn Y (2014) Structural and spectroscopic characteristics of terbium hydroxide/oxide nanorods and plates. Ceram Int 40:13803–13811. https://doi.org/10.1016/j.ceramint.2014.05.096

    Article  CAS  Google Scholar 

  48. Ji X, Hu P, Li X, Zhang L, Sun J (2020) Hydrothermal control, characterization, growth mechanism, and photoluminescence properties of highly crystalline 1D Eu (OH) 3 nanostructures. RSC Adv 10:33499–33508. https://doi.org/10.1039/D0RA04338A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley Publishing.

  50. Yan T, Zhang D, Shi L, Li H (2009) Facile synthesis, characterization, formation mechanism and photoluminescence property of Eu2O3 nanorods. J Alloys Compd 487:483–488. https://doi.org/10.1016/j.jallcom.2009.07.165

    Article  CAS  Google Scholar 

  51. Qiao Z, Yao Y, Song S, Yin M, Yang M, Yan D, Yang L, Luo J (2020) Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J Mater Chem B 8:3138–3149. https://doi.org/10.1039/D0TB00298D

    Article  CAS  PubMed  Google Scholar 

  52. Bhutiya PL, Mahajan MS, Rasheed MA, Pandey M, Hasan SZ, Misra N (2018) Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity. Int J Biol Macromol 112:1264–1271. https://doi.org/10.1016/j.ijbiomac.2018.02.108

    Article  CAS  PubMed  Google Scholar 

  53. Xu W, Zhang Z, Zhang X, Tang Y, Niu Y, Chu X, Zhang S, Ren C (2021) Peptide hydrogel with antibacterial performance induced by rare earth metal ions. Langmuir 37:12842–12852. https://doi.org/10.1021/acs.langmuir.1c01815

    Article  CAS  PubMed  Google Scholar 

  54. Alvares JJ, Furtado IJ (2021) Anti-Pseudomonas aeruginosa biofilm activity of tellurium nanorods biosynthesized by cell lysate of Haloferax alexandrinus GUSF-1 (KF796625). Biometals 34:1007–1016. https://doi.org/10.1007/s10534-021-00323-y

    Article  CAS  PubMed  Google Scholar 

  55. Mansur HS, Costa HS (2008) Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J 137:72–83. https://doi.org/10.1016/j.cej.2007.09.036

    Article  CAS  Google Scholar 

  56. Kattel K, Park JY, Xu W, Bony BA, Heo WC, Tegafaw T, Kim CR, Ahmad M, Jin S, Baeck JS, Chang Y (2013) Surface coated Eu(OH)3 nanorods: A facile synthesis, characterization, MR relaxivities and in vitro cytotoxicity. J Nanosci Nanotechnol 13:7214–7219. https://doi.org/10.1166/jnn.2013.8081

    Article  CAS  PubMed  Google Scholar 

  57. Di W, Li J, Shirahata N, Sakka Y, Willinger MG, Pinna N (2011) Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium. Nanoscale 3:1263–1269. https://doi.org/10.1039/C0NR00673D

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Gazi University Scientific Research Projects Coordination Unit under grant number FDK-2021-6966. We would like to thank the SYNGTOM (The Synthesis Group of Target Organic Molecules) research group for their support in microwave-assisted synthesis.

Funding

This work was funded by a grant (Grant Number: FDK-2021–6966) from Gazi University.

Author information

Authors and Affiliations

Authors

Contributions

Eda Çinar-Avar contributed to nanorod synthesis, characterization, data analysis, literature search, and writing-original draft preparation. Kübra Erkan-Türkmen contributed to microbiological studies and data analysis. Ebru Erdal contributed to biocompability studies and data analysis. Elif Loğoğlu contributed to supervision, manuscript preparation, and language editing. Hikmet Katırcıoğlu contributed to microbiological studies and data analysis. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Eda Çinar Avar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

This is an in vitro study, which does not include any sample receiving process from human or animal. L929 mouse fibroblast cell line (NCTC clone 929- CCL-1) and the microorganisms were obtained from ATCC®.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çinar Avar, E., Türkmen, K.E., Erdal, E. et al. Biological Activities and Biocompatibility Properties of Eu(OH)3 and Tb(OH)3 Nanorods: Evaluation for Wound Healing Applications. Biol Trace Elem Res 201, 2058–2070 (2023). https://doi.org/10.1007/s12011-022-03264-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03264-w

Keywords

Navigation