Skip to main content
Log in

Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, 336-day-old corn cob broilers were bought for the poultry experimental station during the months of May and June 2021. Before the arrival of chicks, the brooders, chick feeders, drinkers, humidity, temperature, and feeding management were controlled according to scientific patterns. These birds were randomly divided into seven groups and six replications of eight birds, viz. Group-A (positive control on basal diet only), Group-B (negative control on basal diet and HS), group-C (basal diet + simple Se 0.3 mg/kg feed), Group-D (basal diet + SeNP 0.3 mg/kg feed + HS), Group-E (BD + HS + chitosan), Group-F (BD + Se + COS), and Group-G (nano Se with chitosan 0.3 mg/kg + BD + HS). On the 42nd day of research, two birds were selected from each replication and sacrificed after blood collection. The initial data related to feeding intake, live body weight, and feed conversion ratio (FCR) were collected before slaughter. The intestinal samples were collected and immediately transferred to formalin after grass morphometry. The live body weight, FCR, feed intake, intestinal histomorphology, relative organ weight, and antioxidant parameters like MDA, SOD, and GPX were significant (P > 0.005) in all groups, with Group-G at the highest, followed by Groups-F, E, D, C, A, and B. Group-B (negative control group) was the most affected group in all aspects because of heat stress and only basal diet. It was concluded that heat stress highly causes a loss in performance, intestinal gross morphology, and histology in poultry, and increases stress conditions, whereas the selenium nanoparticle works to improve the body weight, FCR, and intestinal parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. St-Pierre N, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77

    Article  Google Scholar 

  2. Leon LR, DuBose DA, Mason CW (2005) Heat stress induces a biphasic thermoregulatory response in mice. American Journal of Physiology-Regulatory, Integrative and Comparative. Physiology 288(1):R197–R204

    CAS  Google Scholar 

  3. Mahmoud E-D Ijiri HD, Ebeid TA, Ohtsuka A (2016) Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. J Poultry Sci 0150133

  4. Zaboli G, Huang X, Feng X, Ahn DU (2019) How can heat stress affect chicken meat quality?–a review. Poult Sci 98(3):1551–1556

    Article  CAS  PubMed  Google Scholar 

  5. Lin H, Jiao H, Buyse J, Decuypere E (2006) Strategies for preventing heat stress in poultry. World’s Poult Sci J 62(1):71–86

    Article  Google Scholar 

  6. Donkoh A (1989) Ambient temperature: a factor affecting performance and physiological response of broiler chickens. Int J Biometeorol 33(4):259–265

    Article  CAS  PubMed  Google Scholar 

  7. Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S (2017) Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop Anim Health Prod 49(7):1329–1338

    Article  PubMed  Google Scholar 

  8. Farooqi H, Khan M, Khan M, Rabbani M, Pervez K, Khan J (2005) Evaluation of betaine and vitamin C in alleviation of heat stress in broilers. Int J Agric Biol 5:744–746

    Google Scholar 

  9. Wang ZL (2001) Characterization of nanophase materials. Particle & Particle Systems Characterization: Measurement and Description of Particle Properties and Behavior in Powders and Other Disperse Systems 18(3):142–165

    Article  Google Scholar 

  10. Thulasi A, Rajendran D, Jash S, Selvaraju S, Jose VL, Velusamy S, Mathivanan S (2013) Nanobiotechnology in animal nutrition, Animal nutrition and reproductive physiology (recent concepts), 1st ed.; Sampath KT, Ghosh J, Eds. 499-516

  11. Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Council NR, NRC. (1994) Nutrient requirements of poultry. National Academy Press, Washington, DC

    Google Scholar 

  13. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  14. Xu Y, Shi B, Yan S, Li J, Li T, Guo Y, Guo X (2014) Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs. Czech J Anim Sci 59(4):156–163

    Article  Google Scholar 

  15. Khambualai O, Yamauchi K, Tangtaweewipat S, Cheva-Isarakul B (2009) Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br Poult Sci 50(5):592–597

    Article  CAS  PubMed  Google Scholar 

  16. Shi-bin Y, Hong C (2012) Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr J Biotechnol 11(14):3490–3495

    Google Scholar 

  17. Wang R, Liang R, Lin H, Zhu L, Zhang Y, Mao Y, Dong P, Niu L, Zhang M, Luo X (2017) Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism. Poult Sci 96(3):738–746

    Article  CAS  PubMed  Google Scholar 

  18. Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F (2017) Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J Agric Food Chem 65(51):11251–11258

    Article  CAS  PubMed  Google Scholar 

  19. Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3(2):356–369

    Article  PubMed  PubMed Central  Google Scholar 

  20. Azad M, Kikusato M, Maekawa T, Shirakawa H, Toyomizu M (2010) Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp Biochem Physiol A Mol Integr Physiol 155(3):401–406

    Article  CAS  PubMed  Google Scholar 

  21. Xu Y, Wang Z, Qin Z, Yan S, Shi B (2018) Effects of chitosan addition on growth performance, diarrhoea, anti-oxidative function and serum immune parameters of weaned piglets. South African J Animal Sci 48(1):142–150

    Article  CAS  Google Scholar 

  22. Yang L, Tan G-Y, Fu Y-Q, Feng J-H, Zhang M-H (2010) Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comparative Biochem Physiol Part C: Toxicol Pharmacol 151(2):204–208

    Google Scholar 

  23. Dlouha G, Sevcikova S, Dokoupilova A, Zita L, Heindl J, Skrivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Animal Sci 53(6):265

    Article  CAS  Google Scholar 

  24. Aparna N, Karunakaran R (2016) Effect of selenium nanoparticles supplementation on oxidation resistance of broiler chicken. Indian J Sci Technol 9(S1):1–5

    Article  CAS  Google Scholar 

  25. Surai PF (2002) Natural antioxidants in avian nutrition and reproduction, Nottingham University Press Nottingham

  26. Cai S, Wu C, Gong L, Song T, Wu H, Zhang L (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91(10):2532–2539

    Article  CAS  PubMed  Google Scholar 

  27. Aviagen T (2014) Ross 308 broiler nutrition specifications. Aviagen Group, Huntsville

    Google Scholar 

  28. Dhawan G, Singh I, Dhawan U, Kumar P (2021) Synthesis and characterization of nanoselenium: a step-by-step guide for undergraduate students. J Chem Educ 98(9):2982–2989

    Article  CAS  Google Scholar 

  29. Boroumand S, Safari M, Shaabani E, Shirzad M, Faridi-Majidi R (2019) Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express 6(8):0850d8

    Article  CAS  Google Scholar 

  30. Safdari-Rostamabad M, Hosseini-Vashan SJ, Perai AH, Sarir H (2017) Nanoselenium supplementation of heat-stressed broilers: effects on performance, carcass characteristics, blood metabolites, immune response, antioxidant status, and jejunal morphology. Biol Trace Elem Res 178(1):105–116

    Article  CAS  PubMed  Google Scholar 

  31. Bami MK, Afsharmanesh M, Salarmoini M, Ebrahimnejad H (2021) Effects of selenium-chitosan on growth performance, carcass traits, meat quality, and blood indices of broiler chickens. Livest Sci 250:104562

    Article  Google Scholar 

  32. Bakhshalinejad R, Hassanabadi A, Swick RA (2019) Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Animal Nutrition 5(3):256–263

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90(3):680–686

    Article  CAS  PubMed  Google Scholar 

  34. Cheng K, Song Z, Li S, Yan E, Zhang H, Zhang L, Wang C, Wang T (2019) Effects of resveratrol on intestinal oxidative status and inflammation in heat-stressed rats. J Therm Biol 85:102415

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Meng F, Wang P, Jiang Y, Yin Q, Chang J, Zuo R, Zheng Q, Liu J (2012) Effect of organic and inorganic selenium supplementation on growth performance, meat quality and antioxidant property of broilers. Afr J Biotechnol 11(12):3031–3036

    CAS  Google Scholar 

  36. Perić L, Milošević N, Žikić D, Kanački Z, Džinić N, Nollet L, Spring P (2009) Effect of selenium sources on performance and meat characteristics of broiler chickens. J Appl Poult Res 18(3):403–409

    Article  Google Scholar 

  37. Tang D, Li Z, Mahmood T, Liu D, Hu Y, Guo Y (2020) The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poult Sci 99(4):1847–1861

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nuengjamnong C, Angkanaporn K (2018) Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers. Ital J Anim Sci 17(2):428–435

    Article  CAS  Google Scholar 

  39. Bami MK, Afsharmanesh M, Espahbodi M, Esmaeilzadeh E (2022) Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. J Trace Elem Med Biol 69:126897

    Article  Google Scholar 

  40. Habibian M, Sadeghi G, Ghazi S, Moeini MM (2015) Selenium as a feed supplement for heat-stressed poultry: a review. Biol Trace Elem Res 165(2):183–193

    Article  CAS  PubMed  Google Scholar 

  41. Zhou TX, Chen YJ, Yoo J, Huang Y, Lee J, Jang H, Shin S, Kim H, Cho J, Kim I (2009) Effects of chitooligosaccharide supplementation on performance, blood characteristics, relative organ weight, and meat quality in broiler chickens. Poult Sci 88(3):593–600

    Article  CAS  PubMed  Google Scholar 

  42. Seidavi AR (2018) Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broilerchickens. Poultry Sci J 6(1):99–108

    Google Scholar 

  43. Deng X, Li X, Liu P, Yuan S, Zang J, Li S, Piao X (2008) Effect of chito-oligosaccharide supplementation on immunity in broiler chickens. Asian Australas J Anim Sci 21(11):1651–1658

    Article  CAS  Google Scholar 

  44. Hawkes WC, Keim NL (2003) Dietary selenium intake modulates thyroid hormone and energy metabolism in men. J Nutr 133(11):3443–3448

    Article  CAS  PubMed  Google Scholar 

  45. Chang Q, Lu Y, Lan R (2020) Chitosan oligosaccharide as an effective feed additive to maintain growth performance, meat quality, muscle glycolytic metabolism, and oxidative status in yellow-feather broilers under heat stress. Poult Sci 99(10):4824–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y-B, Xu B-H (2008) Effect of different selenium source (sodium selenite and selenium yeast) on broiler chickens. Anim Feed Sci Technol 144(3–4):306–314

    Article  CAS  Google Scholar 

  47. Choct M, Naylor A, Reinke N (2004) Selenium supplementation affects broiler growth performance, meat yield and feather coverage. Br Poult Sci 45(5):677–683

    Article  CAS  PubMed  Google Scholar 

  48. Zamani Moghaddam A, Mehraei Hamzekolaei M, Khajali F, Hassanpour H (2017) Role of selenium from different sources in prevention of pulmonary arterial hypertension syndrome in broiler chickens. Biol Trace Elem Res 180(1):164–170

    Article  CAS  PubMed  Google Scholar 

  49. Pawar S, Sajjanar B, Lonkar V, Kurade N, Kadam A, Nirmal A, Brahmane M, Bal S (2016) Assessing and mitigating the impact of heat stress in poultry. Adv Anim Vet Sci 4(6):332–341

    Article  Google Scholar 

  50. Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad A (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88(10):2176–2183

    Article  CAS  PubMed  Google Scholar 

  51. Xiao X, Yuan D, Wang Y-X, Zhan X-A (2016) The protective effects of different sources of maternal selenium on oxidative stressed chick embryo liver. Biol Trace Elem Res 172(1):201–208

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Peng K (2008) Developmental morphology of the small intestine of African ostrich chicks. Poult Sci 87(12):2629–2635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of the manuscript wish to thank the Sindh Institute of Animal Health (SIAH) for providing necessary support in research and also thank the Higher Education Commission (HEC) Pakistan for support in funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel Ahmed Gandahi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochi, G.M., Shah, M.G., Gandahi, J.A. et al. Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler. Biol Trace Elem Res 201, 1977–1986 (2023). https://doi.org/10.1007/s12011-022-03262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03262-y

Keywords

Navigation