Skip to main content
Log in

Selenium-Enriched Probiotic Alleviates Western Diet-Induced Non-alcoholic Fatty Liver Disease in Rats via Modulation of Autophagy Through AMPK/SIRT-1 Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Current study was aimed to investigate the ability of L.acidophilus SNZ 86 to biotransform inorganic selenium to a more active organic form, resulting in trace element enrichment. Selenium-enriched L. acidophilus SNZ 86 has been shown to be effective in the treatment of a variety of gastrointestinal illnesses, indicating the need for additional research to determine the full potential of this therapeutic strategy in the treatment of metabolic disorders. Herein, we employed the western style diet-induced model of non-alcoholic fatty liver disease (NAFLD) to explore the therapeutic effect of selenium-enriched probiotic (SP). Male Sprague Dawley rats (160–180 g) were fed a high-fat (58% Kcal of fat) and high-fructose (30% w/v) diet for 12 weeks to develop an animal model mimicking NAFLD. High-fat and High-fructose diet-fed rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, abnormal liver function test, increased hepatic oxidative stress, and steatosis. SP was then administered orally (L acidophilus 1 × 109 CFU/ml containing 0.4 g Se/day; p.o.) for 8 weeks. The selenium enrichment within L. acidophilus SNZ 86 was validated by TEM, which allowed for visualisation of the selenium deposition and size distribution in the probiotic. In NAFLD control rats, the expression of autophagy proteins (LC-3 A/B and Beclin), AMPK, and SIRT-1 was significantly reduced indicating downregulation of autophagy. However, supplementation of SP ameliorates hepatic steatosis as evidenced by improved biochemical markers and autophagic activation via upregulation of the AMPK and SIRT-1 pathway showing the relevance of autophagy in the disease aetiology. Collectively, these findings provide us with a better understanding of the role of SP in the treatment of hepatic steatosis and establish a therapeutic basis for potential clinical application of SP in the prevention of NAFLD and associated pathological conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials support their published claims and comply with field standards data will be available on demand.

References

  1. Friedman SL et al (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922. https://doi.org/10.1038/s41591-018-0104-9

    Article  CAS  Google Scholar 

  2. Levene AP, Goldin RD (2012) The epidemiology, pathogenesis and histopathology of fatty liver disease. Histopathology 61(2):141–152. https://doi.org/10.1111/j.1365-2559.2011.04145.x

    Article  Google Scholar 

  3. Chalsani N et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67(1):328–357

    Article  Google Scholar 

  4. Michelotti GA, Machado MV, Diehl AM (2013) NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 10(11):656–665. https://doi.org/10.1038/nrgastro.2013.183

    Article  CAS  Google Scholar 

  5. Hardy T et al (2016) Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 11:451–496. https://doi.org/10.1146/annurev-pathol-012615-044224

    Article  CAS  Google Scholar 

  6. Ji YX et al (2018) The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 24(2):213–223. https://doi.org/10.1038/nm.4461

    Article  CAS  Google Scholar 

  7. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2(2): p. 1542–52. https://doi.org/10.1038/sj.cdd.4401765

  8. Czaja MJ (2016) Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 61(5):1304–1313. https://doi.org/10.1007/s10620-015-4025-x

    Article  CAS  Google Scholar 

  9. Martinez-Lopez N, Singh R (2015) Autophagy and lipid droplets in the liver. Annu Rev Nutr 35:215–237. https://doi.org/10.1146/annurev-nutr-071813-105336

    Article  CAS  Google Scholar 

  10. Cantó C et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  Google Scholar 

  11. Guo Y et al (2017) Targeting Sirt1 in a rat model of high-fat diet-induced non-alcoholic fatty liver disease: comparison of Gegen Qinlian decoction and resveratrol. Exp Ther Med 14(5):4279–4287. https://doi.org/10.3892/etm.2017.5076

    Article  CAS  Google Scholar 

  12. Mariani S et al (2015) Plasma levels of SIRT1 associate with non-alcoholic fatty liver disease in obese patients. Endocrine 49(3):711–716. https://doi.org/10.1007/s12020-014-0465-x

    Article  CAS  Google Scholar 

  13. Purushotham A et al (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4):327–338. https://doi.org/10.1016/j.cmet.2009.02.006

    Article  CAS  Google Scholar 

  14. Pfluger PT et al (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 105(28):9793–9798. https://doi.org/10.1073/pnas.0802917105

    Article  Google Scholar 

  15. Banerjee J, Bruckbauer A, Zemel MB (2016) Activation of the AMPK/Sirt1 pathway by a leucine–metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Metabolism 65(11):1679–1691. https://doi.org/10.1016/j.metabol.2016.06.011

    Article  CAS  Google Scholar 

  16. Heo J et al (2016) Gut microbiota modulated by probiotics and Garcinia cambogia extract correlate with weight gain and adipocyte sizes in high fat-fed mice. Sci Rep 6:33566. https://doi.org/10.1038/srep33566

    Article  CAS  Google Scholar 

  17. Naito E et al (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol 110(3):650–657. https://doi.org/10.1111/j.1365-2672.2010.04922.x

    Article  CAS  Google Scholar 

  18. Park SS et al (2018) Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver. J Endocrinol 237(2):87–100. https://doi.org/10.1530/JOE-17-0592

    Article  CAS  Google Scholar 

  19. Wendt S et al (2019) Selenium in Cardiac Surgery. Nutr Clin Pract 34(4):528–539. https://doi.org/10.1002/ncp.10326

    Article  CAS  Google Scholar 

  20. Schäfer K et al (2004) Effects of selenium deficiency on fatty acid metabolism in rats fed fish oil-enriched diets. J Trace Elem Med Biol 18(1):89–97

    Article  Google Scholar 

  21. Stapleton SR et al (1997) Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim Biophys Acta 1355(3):259–269. https://doi.org/10.1016/s0167-4889(96)00140-1

    Article  CAS  Google Scholar 

  22. Xu C et al (2018) Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. 9: p. 1129.

  23. Nido SA et al (2016) Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. 171(2): p. 399–409.

  24. Ibrahim HA et al (2012) Selenium-enriched probiotics improves murine male fertility compromised by high fat diet. 147(1): p. 251-260.

  25. Liu Y et al (2015) Protective effects of Selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats. J Agric Food Chem 63(1):242–249. https://doi.org/10.1021/jf5039184

    Article  CAS  Google Scholar 

  26. Graham L, Orenstein JMJNp (2007) Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. 2(10): p. 2439–2450.

  27. Srinivasan K et al (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320. https://doi.org/10.1016/j.phrs.2005.05.004

    Article  CAS  Google Scholar 

  28. Wada T et al (2013) Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet. Am J Physiol Endocrinol Metab 305(11):E1415–E1425. https://doi.org/10.1152/ajpendo.00419.2013

    Article  CAS  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi KJAb (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  30. Rahman I, Kode A, Biswas SKJNp (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165. https://doi.org/10.1038/nprot.2006.378

    Article  CAS  Google Scholar 

  31. Amara VR, Surapaneni SK, Tikoo K (2017) Dysregulation of microRNAs and renin-angiotensin system in high salt diet-induced cardiac dysfunction in uninephrectomized rats. PLoS ONE 12(7):e0180490. https://doi.org/10.1371/journal.pone.0180490

    Article  CAS  Google Scholar 

  32. Karpe PA, Tikoo K (2014) Heat shock prevents insulin resistance–induced vascular complications by augmenting angiotensin-(1–7) signaling. Diabetes 63(3):1124–1139. https://doi.org/10.2337/db13-1267

    Article  CAS  Google Scholar 

  33. Shen XH et al (2005) Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis. World J Gastroenterol 11(32):4957–4961. https://doi.org/10.3748/wjg.v11.i32.4957

    Article  CAS  Google Scholar 

  34. Ding M et al (2010) Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biol Trace Elem Res 133(1):83–97. https://doi.org/10.1007/s12011-009-8414-x

    Article  CAS  Google Scholar 

  35. Zhao Z et al (2020) Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation. Appl Microbiol Biotechnol 104(12):5273–5282. https://doi.org/10.1007/s00253-020-10633-9

    Article  CAS  Google Scholar 

  36. Nagy G et al (2016) In situ electron microscopy of lactomicroselenium particles in probiotic bacteria. Int J Mol Sci 17(7):1047

    Article  Google Scholar 

  37. Krausova G et al (2020) Development of selenized lactic acid bacteria and their selenium bioaccummulation capacity. Fermentation 6(3):91

    Article  CAS  Google Scholar 

  38. Krausova G et al (2021) In vivo bioavailability of selenium in selenium-enriched Streptococcus thermophilus and Enterococcus faecium in CD IGS rats. Antioxidants 10(3):463

    Article  CAS  Google Scholar 

  39. Khambu B et al (2018) Autophagy in non-alcoholic fatty liver disease and alcoholic liver disease. Liver Res 2(3):112–119. https://doi.org/10.1016/j.livres.2018.09.004

    Article  Google Scholar 

  40. Tanaka S et al (2016) Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64(6):1994–2014. https://doi.org/10.1002/hep.28820

    Article  CAS  Google Scholar 

  41. Song GL et al (2018) Selenium-enriched yeast inhibited beta-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer’s disease. Metallomics 10(8):1107–1115. https://doi.org/10.1039/c8mt00041g

    Article  CAS  Google Scholar 

  42. Song YM et al (2015) Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 11(1):46–59. https://doi.org/10.4161/15548627.2014.984271

    Article  CAS  Google Scholar 

  43. Sun Y et al (2018) Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 175(2):374–387. https://doi.org/10.1111/bph.14079

    Article  CAS  Google Scholar 

Download references

Funding

This study is funded by the National Institute of Pharmaceutical Education and Research.

Author information

Authors and Affiliations

Authors

Contributions

RP and KT designed the research work and wrote the manuscript; RP, NS, SKW, and SS performed the experiments and analysed and compiled the data; KT supervised and edited the final manuscript.

Corresponding author

Correspondence to Kulbhushan Tikoo.

Ethics declarations

Ethics Approval

All institutional and national guidelines for the care and use of laboratory animals were followed. The animal studies were approved by the animal ethics committee of the NIPER S.A.S Nagar (IAEC18/09).

Consent for Publication

All authors are willing to publish their research work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, R., Sharma, N., Kabeer, S.W. et al. Selenium-Enriched Probiotic Alleviates Western Diet-Induced Non-alcoholic Fatty Liver Disease in Rats via Modulation of Autophagy Through AMPK/SIRT-1 Pathway. Biol Trace Elem Res 201, 1344–1357 (2023). https://doi.org/10.1007/s12011-022-03247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03247-x

Keywords

Navigation