Skip to main content
Log in

Possible Curative Effects of Boric Acid and Bacillus clausii Treatments on TNBS-Induced Ulcerative Colitis in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Crohn’s disease (CD) and ulcerative colitis (UC) are two chronic relapsing inflammatory bowel diseases (IBD). Although there are several treatment options available to improve the symptoms of IBD patients, there is no effective treatment that provides a definitive solution. In the present study, we aim to investigate the antioxidative/anti-inflammatory effects of oral administration of boric acid and Bacillus clausii in a rat trinitrobenzenesulfonic acid (TNBS)-induced colitis model. The effects of boric acid and B. clausii were examined in serum and colon tissues with the help of some biochemical and histological analyses. Elevated inflammation and oxidative damage were found in the blood and colon tissue samples in the TNBS-induced group according to the complete blood count (CBC), tumor necrosis factor (TNF) alpha, interleukin-35 (IL-35), malondialdehyde (MDA), glutathione peroxidase (GPx), myeloperoxidase (MPO), nitric oxide (NO), and histological findings. Particularly, the highest IL-35 level (70.09 ± 12.62 ng/mL) in the combined treatment group, highest catalase activity (5322 ± 668.1 U/mg protein) in the TNBS-induced group, and lower relative expression of inducible nitric oxide synthase in the TNBS-induced group than the control group were striking findings. According to our results, it can be concluded that boric acid showed more curative effects, even if B. clausii probiotics was partially ameliorative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Abad C, Martinez C, Juarranz MG, Arranz A, Leceta J, Delgado M, Gomariz RP (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124(4):961–971. https://doi.org/10.1053/gast.2003.50141

    Article  CAS  Google Scholar 

  2. Head KA, Jurenka JS (2003) Inflammatory bowel disease part I: ulcerative colitis—pathophysiology and conventional and alternative treatment options. Altern Med Rev 8(3):247–283

    Google Scholar 

  3. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L (2017) Crohn’s disease. Lancet 389:1741–1755. https://doi.org/10.1016/S0140-6736(16)31711-1

    Article  Google Scholar 

  4. de Mattos BRR, Garcia MPG, Nogueira JB, Paiatto LN, Albuguerque CG, Souza C L, Fernandes LGR, Tamashiro WM, Simioni PU (2015) Inflammatory bowel disease: an overview immun mechanisms and biological treatments. Mediators of Inflamm 1-11.https://doi.org/10.1155/2015/493012

  5. Rezaie A, Parker RD, Abdollahi M (2007) Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 52(9):2015–2021. https://doi.org/10.1007/s10620-006-9622-2

    Article  Google Scholar 

  6. Davies MJ (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48(1):8–19. https://doi.org/10.3164/jcbn.11-006FR

    Article  CAS  Google Scholar 

  7. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258. https://doi.org/10.1042/bj2980249

    Article  CAS  Google Scholar 

  8. Nathan C, Xie QW (1994) Nitric oxide synthase: roles, tolls, and controls. Cell 78(6):915–918. https://doi.org/10.1016/0092-8674(94)90266-6

    Article  CAS  Google Scholar 

  9. Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26:3–31. https://doi.org/10.1016/j.mam.2004.09.002

    Article  CAS  Google Scholar 

  10. Cross RK, Wilson KT (2003) Nitric oxide in ınflammatory bowel disease. Inflamm Bowel Dis 9(3):179–189. https://doi.org/10.1097/00054725-200305000-00006

    Article  Google Scholar 

  11. Neurath MF (2014) (2014) Cytokines in inflammatory bowel disease. Immunol 14(5):329–342. https://doi.org/10.1038/nri3661]

    Article  CAS  Google Scholar 

  12. Catalan-Diebne J, Mclntyre LL, Zlotnik A (2018) Interleukin 30 to interleukin 40. J Interferon Cytokine Res 38(10):423–439. https://doi.org/10.1089/jir.2018.0089

    Article  CAS  Google Scholar 

  13. Wirtz S, Billmeier U, Mchedlidze T, Blumberg RS, Neurath MF (2011) Interleukin-35 mediates mucosal immune responses that protect against T-cell–dependent colitis. Gastroentergology 141(5):1875–1886. https://doi.org/10.1053/j.gastro.2011.07.040

    Article  CAS  Google Scholar 

  14. Ardite E, Sans M, Panes J, Romero FJ, Pique JM, Fernandez-Checa JC (2000) Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab Invest 80(5):735–744. https://doi.org/10.1038/labinvest.3780077

    Article  CAS  Google Scholar 

  15. Tham DM, Whitin JC, Cohen HJ (2002) Increased expression of extracellular glutathione peroxidase in mice with dextran sodium sulfate-ınduced experimental colitis. Pediatr Res 51(5):641–646. https://doi.org/10.1203/00006450-200205000-00016

    Article  CAS  Google Scholar 

  16. Nieto N, Torres MI, Fernandez MI, Giron MD, Rios A, Suarez MD, Gil A (2000) Experimental ulcerative colitis ımpairs antioxidant defense system in rat intestine. Dig Dis Sci 45(9):1820–1827. https://doi.org/10.1023/a:1005565708038

    Article  CAS  Google Scholar 

  17. Ghafar H, Yasa N, Mohammadirad A, Dehghan G, Zamani MJ, Nikfar S, Khorasani R, Minaie B, Abdollahi M (2006) Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum Exp Toxicol 25(6):325–332. https://doi.org/10.1191/0960327105ht626oa

    Article  Google Scholar 

  18. Kolias G, Valatas V, Ward SG (2004) Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113(4):427–437. https://doi.org/10.1111/j.1365-2567.2004.01984.x

    Article  CAS  Google Scholar 

  19. Murray FJ (1998) A comparative review of the pharrnacokinetics of boric acid in rodents and humans. Biol Trace Elem Res 66:331–341. https://doi.org/10.1007/BF02783146

    Article  CAS  Google Scholar 

  20. Ince S, Kucukkurt I, Cigerci IH, Fidan F, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24(3):161–164. https://doi.org/10.1016/j.jtemb.2010.01.003

    Article  CAS  Google Scholar 

  21. Türkez H, Geyikoğlu F, Tatar A, Keleş S, Özkan A (2007) Effects of some boron compounds on peripheral human blood. Z Naturforsch C J Biosci 62:889–896. https://doi.org/10.1515/znc-2007-11-1218

    Article  Google Scholar 

  22. Kar F, Hacıoğlu C, Özkoç M, Üstünışık N, Bütün A, Uslu S, Kanbak G (2018) The new perspective neuroprotective effect of boric acid against ethanol-induced oxidative damage on synaptosome. J Appl Biol Sci 12(2):28–33

    Google Scholar 

  23. Kar F, Hacioglu C, Senturk H, Donmez Burukoglu D, Kanbak G (2020) The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res 195(1):150–158. https://doi.org/10.1007/s12011-019-01824-1

    Article  CAS  Google Scholar 

  24. Mack DR (2005) Probiotics. Can Fam Physician 51(11):1455–1457

    Google Scholar 

  25. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  Google Scholar 

  26. Patel C, Patel P, Acharya S (2020) Therapeutic prospective of a spore-forming probiotic—Bacillus clausii UBBC07 against acetaminophen-induced uremia in rats. Probiotics Antimicrob Proteins 12(1):253–258. https://doi.org/10.1007/s12602-019-09540-x]

    Article  CAS  Google Scholar 

  27. Di Caro S, Tao H, Grillo A, Franceschi F, Elia C, Zocco MA, Gasbarrini G, Sepulveda AR, Gasbarrini A (2005) Bacillus clausii effect on gene expression pattern in small bowel mucosa using DNA microarray analysis. Eur J Gastroenterol Hepatol 17(9):951–960. https://doi.org/10.1097/00042737-200509000-00011

    Article  Google Scholar 

  28. Kankuri E, Asmawi MZ, Korpela R, Vapaatalo H, Moilanen E (1991) Induction of iNOS ın a rat model of acute colitis. Inflammation 23(2):141–152. https://doi.org/10.1023/a:1020241028723

    Article  Google Scholar 

  29. Ataizi Z, Ozkoc M, Kanbak G, Karimkhani H, Burukoglu Donmez D, Ustunisik N, Ozturk B (2019) Evaluation of the neuroprotective role of boric acid in preventing traumatic brain injury-mediated oxidative stress. Turk Neurosur 1-7.https://doi.org/10.5137/1019-5149.JTN.25692-18.5

  30. Karimkhani H, Özkoç M, Shojaolsadati P, Uzuner K, Burukoglu Donmez D, Kanbak G (2021) Protective effect of boric acid and omega-3 on myocardial infarction in an experimental rat model. Biol Trace Elem Res 199:2612–2620. https://doi.org/10.1007/s12011-020-02360-z

    Article  CAS  Google Scholar 

  31. Can B, Kar F, Kar E, Özkoç M, Şentürk H, Dönmez Burukoğlu D, Kanbak G, Alataş İÖ (2021) Conivaptan and boric acid treatments in acute kidney ınjury: ıs this combination effective and safe? Biol Trace Elem Res 1-15.https://doi.org/10.1007/s12011-021-02977-8

  32. Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T (1983) Assay meethod for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem 132(2):345–352. https://doi.org/10.1016/0003-2697(83)90019-2

    Article  CAS  Google Scholar 

  33. Cortas NK, Wakid NW (1990) Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem 36:1440–1443

    Article  CAS  Google Scholar 

  34. Ohkawa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  35. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  36. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    Article  CAS  Google Scholar 

  37. Cengiz M, Altuner Y, Sahinturk V, Ozden H, Senturk H, Bayramoglu G, Burukoglu Donmez D, Sahin I, Ayhanci A (2012) Lycopene protects liver against ulcerative colitis. Current Drug Therapy 7(1):24–29. https://doi.org/10.2174/157488512800389227

    Article  CAS  Google Scholar 

  38. Mateus V, Rocha J, Mota-Filipe H, Sepodes B, Pinto R (2018) Hemin reduces inflammation associated with TNBS-induced colitis. Clin Exp Gastroenterol 11:325–334. https://doi.org/10.2147/CEG.S166197

    Article  CAS  Google Scholar 

  39. Fawley J, Gourlay D (2016) Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Sur Res 202(1):225–234. https://doi.org/10.1016/j.jss.2015.12.008

    Article  CAS  Google Scholar 

  40. Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, Mohammad N, Chen KT, Moss AK, Ramasamy S, Faruqui A, Hodin S, Malo PS, Ebrahimi F, Narisawa S, Millan JL, Warren HS, Kaplan JB, Kitts CL, Hohmann EL, Hodin RA (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59(11):1476–1484. https://doi.org/10.1136/gut.2010.211706

    Article  CAS  Google Scholar 

  41. Hoa TH, Duc LH, Isticato R, Baccigalupi L, Ricca E, Van PH, Cutting SM (2011) Fate and sissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol 67(9):3819–3823. https://doi.org/10.1128/AEM.67.9.3819-3823.2001

    Article  Google Scholar 

  42. Togawa JI, Nagase H, Tanaka K, Inamori M, Nakajima A, Ueno N, Saito T, Sekihara H (2002) Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J Gastroenterol Hepatol 17(12):1291–1298. https://doi.org/10.1046/j.1440-1746.2002.02868.x

    Article  CAS  Google Scholar 

  43. Liu L, Yuan S, Sun Y, Long Y, Li Y, Niu Y, Li C, Gan H, Cao S, Mei Q (2009) The possible mechanisms of Fructus Mume pill in the treatment of colitis induced by 2,4,6-trinitrobenzene sulfonic acid in rats. J Ethnopharmacol 126(2):557–564. https://doi.org/10.1016/j.jep.2009.08.013

    Article  Google Scholar 

  44. Larrosa M, Yanez-Gascon M, Selma M, Gonzalez-Sarrisa A, Toti S, Ceron J, Tomas-Barberan F, Dolara P, Espin JC (2009) Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 57(6):2211–2220. https://doi.org/10.1021/jf803638d

    Article  CAS  Google Scholar 

  45. Celikbilek M, Dogan S, Ozbakır O, Zararsız G, Kücük H, Gürsoy S, Yurci A, Güven K, Yücesoy M (2013) Neutrophil–lymphocyte ratio as a predictor of disease severity in ulcerative colitis. J Clin Lab Anal 27(1):72–76. https://doi.org/10.1002/jcla.21564

    Article  CAS  Google Scholar 

  46. Idiz UO, Aysan E, Firat D, Ercan C, Demirci S, Sahin F (2019) Effects of boric acid-linked ampicillin on the rat intra-abdominal sepsis model. Pak J Pharm Sci 32(2):477–481

    CAS  Google Scholar 

  47. Herias MV, Koninkx J, Vos J, Huis in’t Veld J, van Dijk J, (2005) Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice. Int J Food Microbiol 103(2):143–155. https://doi.org/10.1016/j.ijfoodmicro.2004.11.032

    Article  CAS  Google Scholar 

  48. Garside P (1991) Cytokines in experimental colitis. Clin Exp Immunol 118(3):337–339. https://doi.org/10.1046/j.1365-2249.1999.01088.x

    Article  Google Scholar 

  49. Xu C-L, Guo Y, Qiao L, Ma L, Cheng Y-Y (2018) Recombinant expressed vasoactive intestinal peptide analogue ameliorates TNBS-induced colitis in rats. World J Gastroenterol 24(6):706–715. https://doi.org/10.3748/wjg.v24.i6.706

    Article  CAS  Google Scholar 

  50. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DAA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569. https://doi.org/10.1038/nature06306

    Article  CAS  Google Scholar 

  51. Zhang B, Liu Y, Lan X, Zhang X, Li X, Zhao Y, Li G, Du C, Lu S, Wang H (2018) Oral Escherichia coli expressing IL-35 meliorates experimental colitis in mice. J Transl Med 16(1):1–10. https://doi.org/10.1186/s12967-018-1441-7

    Article  CAS  Google Scholar 

  52. Nan Z, Fan H, Tang Q, Zhang M, Xu M, Chen Q, Liu Y, Dong Y, Wu H, Deng S (2018) Dual expression of CXCR4 and IL-35 enhances the therapeutic effects of BMSCs on TNBS-induced colitis in rats through expansion of Tregs and suppression of Th17 cells. Biochem Biophys Res Commun 499(4):727–734. https://doi.org/10.1016/j.bbrc.2018.03.043

    Article  CAS  Google Scholar 

  53. Cao J, Jiang L, Zhang X, Yao X, Geng C, Xue X, Zhong L (2008) Boric acid inhibits LPS-induced TNF-a formation through a thiol-dependent mechanism in THP-1 cells. J Trace Elem Med Biol 22(3):189–195. https://doi.org/10.1016/j.jtemb.2008.03.005

    Article  CAS  Google Scholar 

  54. Dargahi N, Johnson J, Donkor O, Vasiljevic T, Apostolopoulos V (2019) Immunomodulatory effects of probiotics: can they be used to treat allergiesand autoimmune diseases? Maturitas 119:25–38. https://doi.org/10.1016/j.maturitas.2018.11.002

    Article  CAS  Google Scholar 

  55. Dar HY, Pal S, Shukla P, Mishra PK, Tomar GB, Chattopadhyay N, Srivastava RK (2018) Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model. Nutrition 54:118–128. https://doi.org/10.1016/j.nut.2018.02.013

    Article  CAS  Google Scholar 

  56. Ancha HR, Kurella RR, McKimmey CC, Lightfoot S, Harty RF (2009) Effects of n-acetylcysteine plus mesalamine on prostaglandin synthesis and nitric oxide generation in TNBS-induced colitis in rats. Dig Dis Sci 54(Suppl 4):758–766. https://doi.org/10.1007/s10620-008-0438-0

    Article  CAS  Google Scholar 

  57. Avdagić N, Zaćiragić A, Babić N, Hukić M, Šeremet M, Lepara O, Nakaš-Ićindić E (2013) Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn J Basic Med Sci 13(1):5–9. https://doi.org/10.17305/bjbms.2013.2402

    Article  Google Scholar 

  58. Urdaci MC, Bressollier P, Pinchuk I (2004) Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38(3):86–90. https://doi.org/10.1097/01.mcg.0000128925.06662.69

    Article  Google Scholar 

  59. Li XL, Cai YQ, Qin H, Wu YJ (2008) Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 86(12):841–849. https://doi.org/10.1139/Y08-089

    Article  CAS  Google Scholar 

  60. Liu X, Wang J (2011) Anti-inflammatory effects of iridoid glycosides fraction of Folium syringae leaves on TNBS-induced colitis in rats. J Ethnopharmacol 133(2):780–787. https://doi.org/10.1016/j.jep.2010.11.010

    Article  CAS  Google Scholar 

  61. Tabari MV, Moein S, Qujeq D, Kashifard M, Shirvani JS, Tilaki KH, Farshidfar G (2017) Evaluation of the potential antioxidant role of high-density lipoprotein-cholesterol (HDL-c) in patients with ulcerative colitis. Ann Colorectal Res 1-6.https://doi.org/10.5812/acr.13699

  62. Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, Zheng F, Wu B (2020) Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis 11:1–13. https://doi.org/10.1038/s41419-020-2299-1

    Article  CAS  Google Scholar 

  63. Cengiz M (2018) Boric acid protects against cyclophosphamide-induced oxidative stress and renal damage in rats. Cell Mol Biol 64(12):11–14

    Article  Google Scholar 

  64. Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I (2012) Protective effect of boric acid against carbon tetrachloride–induced hepatotoxicity in mice. Drug Chem Toxicol 35(3):285–292. https://doi.org/10.3109/01480545.2011.607825

    Article  CAS  Google Scholar 

  65. Sogut I, Oglakci A, Kartkaya K, Kusat Ol K, Savasan Sogut M, Kanbak G, Erden Inal M (2015) Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Exp Ther Med 9(3):1023–1027. https://doi.org/10.3892/etm.2014.2164

    Article  CAS  Google Scholar 

  66. Catinean A, Neag MA, Krishnan K, Muntean DM, Bocsan CI, Pop RM, Mitre AO, Melincovici CS, Buzoianu AD (2020) Probiotic Bacillus spores together with amino acids and immunoglobulins exert protective effects on a rat model of ulcerative colitis. Nutrients 12(12):1–18. https://doi.org/10.3390/nu12123607

    Article  CAS  Google Scholar 

  67. Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320:61–67. https://doi.org/10.1042/bj3200061

    Article  CAS  Google Scholar 

  68. Tehrani SH, Moosavi-Movahedi AA (2018) Catalase and its mysteries. Prog Biophys Mol Biol 140:5–12. https://doi.org/10.1016/j.pbiomolbio.2018.03.001

    Article  CAS  Google Scholar 

  69. Esworthy RS, Binder SW, Doroshow JH, Chu FF (2003) Microflora trigger colitis in mice deficient in selenium gene expression. Biol Chem 384(4):597–607. https://doi.org/10.1515/BC.2003.067

    Article  CAS  Google Scholar 

  70. Häuser F, Rossmann H, Laubert-Reh D, Wild PS, Zeller T, Müller C, Neuwirth S, Blankenberg S, Lackner KJ (2015) Inflammatory bowel disease (IBD) locus 12: is glutathione peroxidase-1 (GPX1) the relevant gene? Genes Immun 16(8):571–575. https://doi.org/10.1038/gene.2015.35

    Article  CAS  Google Scholar 

  71. Lee IA, Hyun YJ, Kim DH (2010) Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-κB activation. Eur J Pharmacol 648:162–170. https://doi.org/10.1016/j.ejphar.2010.08.046

    Article  CAS  Google Scholar 

  72. Yildiz G, Yildiz Y, Ulutas PA, Yaylali A, Ural M (2015) Resveratrol pretreatment ameliorates TNBS colitis in rats. Recent Pat Endocr Metab Immune Drug Discov 9(2):134–140. https://doi.org/10.2174/1872214809666150806105737

    Article  CAS  Google Scholar 

  73. Colares JR, Schemitt EG, Hartmann RM, Moura RM, Morgan-Martins MI, Fillmann HS, Fillmann L, Marroni NP (2016) Effect of lecithin on oxidative stress in an experimental model of colitis rats induced by acetic acid. J Coloproctol 36(2):97–103. https://doi.org/10.1016/j.jcol.2016.03.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director and workers of the Medical and Surgical Experimental Research Centre of the University for their kind cooperation throughout the animal care.

Funding

This project was financially supported by the Scientific Research Projects Commission of the Eskisehir Osmangazi University (Eskişehir, Turkey) (Project #202011D03).

Author information

Authors and Affiliations

Authors

Contributions

Özkoç M. and Kanbak G. designed the study; Özkoç M., Can B., and Şentürk H. performed surgical operations; Özkoç M. and Can B. performed the biochemical experiments, acquired and analyzed data; Özkoç M. and Kanbak G. interpreted the biochemical data; Dönmez Burukoğlu D. carried out the histological experiments and interpreted the histologic data; Özkoç M. wrote the manuscript; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Mete Özkoç.

Ethics declarations

Ethics Approval

All animal research protocols in this study were approved by the Institutional Ethics Committee (HADYEK, Protocol # 778/2019).

Consent for Publication

All authors have given consent for the manuscript to be published by the corresponding author.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkoç, M., Can, B., Şentürk, H. et al. Possible Curative Effects of Boric Acid and Bacillus clausii Treatments on TNBS-Induced Ulcerative Colitis in Rats. Biol Trace Elem Res 201, 1237–1251 (2023). https://doi.org/10.1007/s12011-022-03215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03215-5

Keywords

Navigation