Skip to main content

Advertisement

Log in

RELATIONSHIP BETWEEN SELENIUM NUTRITIONAL STATUS AND MARKERS OF LOW-GRADE CHRONIC INFLAMMATION IN OBESE WOMEN

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Low-grade chronic inflammation is one of the main disorders that characterize adipose tissue dysfunction in obesity and is an important element in the pathogenesis of several comorbidities. In this context, selenium is an essential micronutrient that exerts important anti-inflammatory functions, and the role of selenium in controlling inflammation associated with obesity is not well defined. Thus, this study aimed to evaluate the relationship between markers of the nutritional status of selenium and low-grade chronic inflammation in obese women. This cross-sectional study included 81 women aged between 18 and 50 years, who were divided into two groups according to body mass index (BMI): the obesity group (n = 38) and normal weight group (n = 43). Selenium intake was assessed by 3-day diet records. The plasma, erythrocyte, and urinary selenium concentrations were determined using inductively coupled plasma optical emission spectrometry. The analysis of serum cytokines interleukin (IL)-8, IL-1β, IL-6, IL-10, and tumor necrosis factor alpha (TNFα) was performed using flow cytometry. The results of this study revealed that the obese women had higher dietary intake of selenium than eutrophic women. However, obese participants showed decreased selenium concentrations in plasma and erythrocytes, in parallel with increased concentrations of selenium in the urine. Regarding the inflammatory parameters, obese women exhibited higher concentrations of IL-6 and lower concentrations of the cytokines IL-8, IL-1β, and TNFα than eutrophic women. In the binary logistic regression analysis, erythrocyte selenium was considered an independent predictor of the serum concentrations of cytokine IL-8 in obese women, reflecting the anti-inflammatory action of this micronutrient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, Moreno LA, Bray GA, Martinez JA (2017) Obesity Nat Rev Dis Primers 3:17034. https://doi.org/10.1038/nrdp.2017.34

    Article  Google Scholar 

  2. Hotamisligil GS (2017) Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity 47:406–420. https://doi.org/10.1016/j.immuni.2017.08.009

    Article  CAS  Google Scholar 

  3. Herrada AA, Olate-Briones A, Rojas A, Liu C, Escobedo N, Piesche M (2021) Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obes Rev 22:e13200. https://doi.org/10.1111/obr.13200

    Article  CAS  Google Scholar 

  4. Engin A (2017) The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol 960:221–245. https://doi.org/10.1007/978-3-319-48382-5_9

    Article  CAS  Google Scholar 

  5. Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13:633–643. https://doi.org/10.1038/nrendo.2017.90

    Article  CAS  Google Scholar 

  6. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. https://doi.org/10.1146/annurev-immunol-031210-101322

    Article  CAS  Google Scholar 

  7. Connaughton RM, McMorrow AM, McGillicuddy FC, Lithander FE, Roche HM (2016) Impact of anti-inflammatory nutrients on obesity-associated metabolic-inflammation from childhood through to adulthood. Proc Nutr Soc 75:115–124. https://doi.org/10.1017/S0029665116000070

    Article  Google Scholar 

  8. Kieliszek M, Błażejak S (2016) Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 21:609. https://doi.org/10.3390/molecules21050609

    Article  CAS  Google Scholar 

  9. Koeberle SC, Kipp AP (2018). Selenium and Inflammatory Mediators. In: Michalke B (ed) Selenium. Molecular and Integrative Toxicology, Springer, Cham, pp 137–156.

  10. József L, Filep JG (2003) Selenium-containing compounds attenuate peroxynitrite-mediated NF-kappaB and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. Free Radic Biol Med 35:1018–1027. https://doi.org/10.1016/s0891-5849(03)00439-8

    Article  Google Scholar 

  11. Kim SH, Johnson VJ, Shin TY, Sharma RP (2004) Selenium Attenuates Lipopolysaccharide-Induced Oxidative Stress Responses Through Modulation of p38 MAPK and NF-κB Signaling Pathways. Exp Biol Med (Maywood) 229:203–213. https://doi.org/10.1177/153537020422900209

    Article  CAS  Google Scholar 

  12. Youn HS, Lim HJ, Choi YJ, Lee JY, Lee MY, Ryu JH (2008) Selenium suppresses the activation of transcription factor NF-kappa B and IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol 8:495–501. https://doi.org/10.1016/j.intimp.2007.12.008

    Article  CAS  Google Scholar 

  13. Nelson SM, Lei X, Prabhu KS (2011) Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. J Nutr 141:1754–1761. https://doi.org/10.3945/jn.111.141176

    Article  CAS  Google Scholar 

  14. Zhang Y, Roh YJ, Han SJ, Park I, Lee HM, Ok YS, Lee BC, Lee SR (2020) Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants (Basel) 9:383. https://doi.org/10.3390/antiox9050383

    Article  CAS  Google Scholar 

  15. Cominetti C, de Bortoli MC, Garrido AB Jr, Cozzolino SM (2012) Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr Res 32:403–407. https://doi.org/10.1016/j.nutres.2012.05.005

    Article  CAS  Google Scholar 

  16. Fontenelle LC, Feitosa MM, Freitas TEC, Severo JS, Morais JBS, Henriques GS, Oliveira FE, Moita Neto JM, Marreiro DN (2021) Selenium status and its relationship with thyroid hormones in obese women. Clin Nutr ESPEN 41:398–404. https://doi.org/10.1016/j.clnesp.2020.10.012

    Article  Google Scholar 

  17. Oliveira ARS, Cruz KJC, Morais JBS et al (2021) Selenium status and oxidative stress in obese: Influence of adiposity. Eur J Clin Invest 51:e13538. https://doi.org/10.1111/eci.13538

    Article  CAS  Google Scholar 

  18. Renko K, Hofmann PJ, Stoedter M, Hollenbach B, Behrends T, Köhrle J, Schweizer U, Schomburg L (2009) Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J 23:1758–1765. https://doi.org/10.1096/fj.08-119370

    Article  CAS  Google Scholar 

  19. Martitz J, Becker NP, Renko K, Stoedter M, Hybsier S, Schomburg L (2015) Gene-specific regulation of hepatic selenoprotein expression by interleukin-6. Metallomics 7:1515–1521. https://doi.org/10.1039/c5mt00211g

    Article  CAS  Google Scholar 

  20. Hill KE, Wu S, Motley AK, Stevenson TD, Winfrey VP, Capecchi MR, Atkins JF, Burk RF (2012) Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J Biol Chem 287:40414–40424. https://doi.org/10.1074/jbc.M112.421404

    Article  CAS  Google Scholar 

  21. Wastney ME, Combs GF Jr, Canfield WK, Taylor PR, Patterson KY, Hill AD, Moler JE, Patterson BH (2011) A human model of selenium that integrates metabolism from selenite and selenomethionine. J Nutr 141:708–717. https://doi.org/10.3945/jn.110.129049

    Article  CAS  Google Scholar 

  22. di Giuseppe R, Koch M, Schlesinger S, Borggrefe J, Both M, Müller HP, Kassubek J, Jacobs G, Nöthlings U, Lieb W (2017) Circulating selenoprotein P levels in relation to MRI-derived body fat volumes, liver fat content, and metabolic disorders. Obesity (Silver Spring) 25:1128–1135. https://doi.org/10.1002/oby.21841

    Article  CAS  Google Scholar 

  23. Mutakin MA, Wijaya A, Kobayashi K, Yamazaki C, Kameo S, Nakazawa M, Koyama H (2013) Association between selenium nutritional status and metabolic risk factors in men with visceral obesity. J Trace Elem Med Biol 27:112–116. https://doi.org/10.1016/j.jtemb.2012.09.006

    Article  CAS  Google Scholar 

  24. Duarte GBS, Reis BZ, Rogero MM, Vargas-Mendez E, Júnior FB, Cercato C, Cozzolino SMF (2019) Consumption of Brazil nuts with high selenium levels increased inflammation biomarkers in obese women: A randomized controlled trial. Nutrition 63–64:162–168. https://doi.org/10.1016/j.nut.2019.02.009

    Article  CAS  Google Scholar 

  25. Ministério da Saúde (BR) (2011). Orientações para a coleta e análise de dados antropométricos em serviços de saúde: Norma Técnica do Sistema de Vigilância Alimentar e Nutricional – SISVAN. Ministério da Saúde, Brasília. https://bvsms.saude.gov.br/bvs/publicacoes/orientacoes_coleta_analise_dados_antropometricos.pdf. Accessed 23 August 2021.

  26. World Health Organization (2008) Waist circumference and waist-hip ratio: report of a WHO Expert Consultation. WHO Press, Geneva

    Google Scholar 

  27. Baena CP, Lotufo PA, Fonseca MG, Santos IS, Goulart AC, Benseñor IM (2016) Neck Circumference Is Independently Associated with Cardiometabolic Risk Factors: Cross-Sectional Analysis from ELSA-Brasil. Metab Syndr Relat Disord 14:145–153. https://doi.org/10.1089/met.2015.0083

    Article  CAS  Google Scholar 

  28. World Health Organization (2000) Obesity: preventing and managing the global epidemic e report of a WHO consultation. WHO Press, Geneva

    Google Scholar 

  29. Castanheira M, Chor D, Braga JU, Cardoso LO, Griep RH, Molina MDCB, da Fonseca MJM (2018) Predicting cardiometabolic disturbances from waist-to-height ratio: findings from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) baseline. Public Health Nutr 21:1028–1035. https://doi.org/10.1017/S136898001700338X

    Article  Google Scholar 

  30. Tabela Brasileira de Composição de Alimentos (BR) (2011), 4th edn. NEPAUNICAMP, Campinas.

  31. Ferreira KS, Gomes JC, Bellato CR, Jordão CP (2002) Concentrações de selênio em alimentos consumidos no Brasil. Rev Panam Salud Públic 11:172e7

    Article  Google Scholar 

  32. InstitutoBrasileiro de Geografia e Estatística (2011) Pesquisa de Orçamentos Familiares 2008–2009: tabelas de composição nutricional dos alimentos consumidos no Brasil. IBGE, Rio de Janeiro

    Google Scholar 

  33. US Department of Agriculture, Agricultural Research Service (2016). Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28 (Slightly revised). http://www.ars.usda.gov/nea/bhnrc/mafcl. Accessed 18 April 2020.

  34. Institute of Medicine (US) (2000). Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press, Washington.

  35. Jaime PC, Latorre MRDO, Fornés NS, Zerbini CAF (2003) Comparative study among two methods for energy adjustment for nutrient intake. J Brazilian Soc Food Nutr 26:11e8

    Google Scholar 

  36. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220Se31S. https://doi.org/10.1093/ajcn/65.4.1220S

    Article  Google Scholar 

  37. Slater B, Marchioni DL, Fisberg RM (2004) Estimating prevalence of inadequate nutrient intake. Rev Saúde Pública 38:599–605. https://doi.org/10.1590/S0034-89102004000400019

    Article  Google Scholar 

  38. Recknagel S, Brätter P, Tomiak A, Rösick U (1993) Determination of selenium in blood serum by ICP-OES including an on-line wet digestion and Se-hydride formation procedure. Fresenius J Anal Chem 346:833–836. https://doi.org/10.1007/BF00321300

    Article  CAS  Google Scholar 

  39. Niedzielski P, Siepak M (2003) Analytical methods for determining arsenic, antimony and seleniumin environmental samples. Pol J Environ Stud 12:653e67

    Google Scholar 

  40. Harrington JM, Young DJ, Essader AS, Sumner SJ, Levine KE (2014) Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol Trace Elem Res 160:132e42. https://doi.org/10.1007/s12011-014-0033-5

    Article  CAS  Google Scholar 

  41. Błażewicz A, Klatka M, Astel A, Korona-Glowniak I, Dolliver W, Szwerc W, Kocjan R (2015) Serum and urinary selenium levels in obese children: a cross-sectional study. J Trace Elem Med Biol 29:116e22. https://doi.org/10.1016/j.jtemb.2014.07.016

    Article  CAS  Google Scholar 

  42. Van Assendelft OW (1972). The measurement of hemoglobin. In: Izak G, Lewis SM (eds) Modern concepts in hematology: symposia of the international committee for standardization in hematology, Academic Press, New York, pp 14e25.

  43. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391e402. https://doi.org/10.1038/sj.ejcn.1601800

    Article  CAS  Google Scholar 

  44. Vitoux D, Arnaud J, Chappuis P (1999) Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology? J Trace Elem Med Biol 13:113e28. https://doi.org/10.1016/S0946-672X(99)80001-7

    Article  Google Scholar 

  45. Oster O, Prellwitz W (1990) The renal excretion of selenium. Biol Trace Elem Res 24:119–146. https://doi.org/10.1007/BF02917201

    Article  CAS  Google Scholar 

  46. American Diabetes Association (2021) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes–2021. Diabetes Care 44:S15–S33. https://doi.org/10.2337/dc21-S002

    Article  Google Scholar 

  47. Lorenzo-Medina M, De-La-Iglesia S, Ropero P, Nogueira-Salgueiro P, Santana-Benitez J (2014) Effects of hemoglobin variants on hemoglobin a1c values measured using a high-performance liquid chromatography method. J Diabetes Sci Technol 8:1168–1176. https://doi.org/10.1177/1932296814538774

    Article  Google Scholar 

  48. Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192. https://doi.org/10.2337/diacare.21.12.2191

    Article  CAS  Google Scholar 

  49. Geloneze B, Vasques ACJ, Stabe CFC, Pareja JC, Rosado LEFPL, Queiroz EC, Tambascia MA (2009) HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metab 53:281–287. https://doi.org/10.1590/S0004-27302009000200020

    Article  Google Scholar 

  50. Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, Jones SR (2013) Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 310:2061–2068. https://doi.org/10.1001/jama.2013.280532

    Article  CAS  Google Scholar 

  51. Faludi AA, Izar MCO, Saraiva JFK et al (2017) Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol 109:1–76. https://doi.org/10.5935/abc.20170121

    Article  Google Scholar 

  52. Shim JS, Oh K, Kim HC (2014) Dietary assessment methods in epidemiologic studies. Epidemiol Health 36:e2014009. https://doi.org/10.4178/epih/e2014009

    Article  Google Scholar 

  53. Kipp AP, Strohm D, Brigelius-Flohé R, Schomburg L, Bechthold A, Leschik-Bonnet E, Heseker H, German Nutrition Society (DGE) (2015) Revised reference values for selenium intake. J Trace Elem Med Biol 32:195e9. https://doi.org/10.1016/j.jtemb.2015.07.005

    Article  CAS  Google Scholar 

  54. Damms-Machado A, Weser G, Bischoff SC (2012) Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr J 11:34. https://doi.org/10.1186/1475-2891-11-34

    Article  CAS  Google Scholar 

  55. Hosseini B, Saedisomeolia A, Allman-Farinelli M (2017) Association Between Antioxidant Intake/Status and Obesity: a Systematic Review of Observational Studies. Biol Trace Elem Res 175:287–297. https://doi.org/10.1007/s12011-016-0785-1

    Article  CAS  Google Scholar 

  56. Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K (2020) Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 11:1234. https://doi.org/10.3389/fphar.2020.01234

    Article  CAS  Google Scholar 

  57. Göen T, Greiner A (2018). Human Biomonitoring of Selenium Exposure. In: Michalke B (ed) Selenium. Molecular and Integrative Toxicology, Springer, Cham, pp 467–494.

  58. Błazewicz A, Szymánska I, Dolliver W, Suchocki P, Turło J, Makarewicz A, Skórzynska-Dziduszko K (2020) Are obese patients with Autism Spectrum Disorder more likely to be selenium deficient? Research findings on pre- and post-pubertal children. Nutrients 12:3581. https://doi.org/10.3390/nu12113581

    Article  CAS  Google Scholar 

  59. Tinkov AA, Bogdański P, Skrypnik D, Skrypnik K, Skalny AV, Aaseth J, Skalnaya MG, Suliburska J (2021) Trace element and mineral levels in serum, hair, and urine of obese women in relation to body composition, blood pressure, lipid profile, and insulin resistance. Biomolecules 11:689. https://doi.org/10.3390/biom11050689

    Article  CAS  Google Scholar 

  60. Robberecht HJ, Deelstra HA (1984) Selenium in human urine: concentration levels and medical implications. Clin Chim Acta 136:107–120. https://doi.org/10.1016/0009-8981(84)90282-1

    Article  CAS  Google Scholar 

  61. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743. https://doi.org/10.1089/ars.2011.4145

    Article  CAS  Google Scholar 

  62. Yang T, Zhao Z, Liu T, Zhang Z, Wang P, Xu S, Lei XG, Shan A (2017) Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine. Oncotarget 8:13428–13439. https://doi.org/10.18632/oncotarget.14550

    Article  Google Scholar 

  63. de Waal MR, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220. https://doi.org/10.1084/jem.174.5.1209

    Article  Google Scholar 

  64. Pereira S, Teixeira L, Aguilar E, Oliveira M, Savassi-Rocha A, Pelaez JN, Capettini L, Diniz MT, Ferreira A, Alvarez-Leite J (2014) Modulation of adipose tissue inflammation by FOXP3+ Treg cells, IL-10, and TGF-β in metabolically healthy class III obese individuals. Nutrition 30:784–790. https://doi.org/10.1016/j.nut.2013.11.023

    Article  CAS  Google Scholar 

  65. Del Giudice M, Gangestad SW (2018) Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun 70:61–75. https://doi.org/10.1016/j.bbi.2018.02.013

    Article  CAS  Google Scholar 

  66. Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R (2015) Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. Plos One 10:e0133494. https://doi.org/10.1371/journal.pone.0133494

    Article  CAS  Google Scholar 

  67. Mohamed AA, Shousha WG, Zaki ME, El-Bassyouni HT, El-Hanafi H, Abdo SM (2020). Inflammatory and endothelial dysfunction indices among Egyptian females with obesity classes I-III. Biosci Rep 40:BSR20192910. 10.1042/BSR20192910

  68. Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, Capó X, Mateos D, Ugarriza L, Tur JA, Sureda A (2021) Peripheral Blood Mononuclear Cells Oxidative Stress and Plasma Inflammatory Biomarkers in Adults with Normal Weight Overweight and Obesity. Antioxidants (Basel) 10:813. https://doi.org/10.3390/antiox10050813

    Article  CAS  Google Scholar 

  69. Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Erickson KL, Yu R (2006) Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond) 30:1347–1355. https://doi.org/10.1038/sj.ijo.0803259

    Article  CAS  Google Scholar 

  70. Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, Pietka T, Chang SW, Ghosh S, Myckatyn TM, Klein S (2021) Associations Among Adipose Tissue Immunology, Inflammation, Exosomes and Insulin Sensitivity in People With Obesity and Nonalcoholic Fatty Liver Disease. Gastroenterology 161:968-981.e12. https://doi.org/10.1053/j.gastro.2021.05.008

    Article  CAS  Google Scholar 

  71. Phillips CM, Perry IJ (2013) Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab 98:E1610–E1619. https://doi.org/10.1210/jc.2013-2038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was partially supported by the National Coordination of High Education Personnel Formation Programs (CAPES – Brazil) (Finance Code 001) and the National Council for Scientific and Technologic Development (CNPq – Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LCF and DNM; Methodology: LCF, LRS, SRSM, JBSM and DNM; Resources: DNM, GSH, DCB, JMCS, FLTL, and FEO; Investigation: LCF, MPS, LRS, BEPC, TGVS, TCS, SRSM, JBSM, TMSD, FEO, and DCB; Formal analysis: LCF, DCB, and GSH;

Visualization and writing – original draft: LCF; Writing – review & editing: LCF and DNM; Project administration and Supervision: DNM.

Corresponding author

Correspondence to Larissa Cristina Fontenelle.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Federal University of Piauí (Date: 12 April 2017/No 2.014.100). Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontenelle, L.C., de Paiva Sousa, M., dos Santos, L.R. et al. RELATIONSHIP BETWEEN SELENIUM NUTRITIONAL STATUS AND MARKERS OF LOW-GRADE CHRONIC INFLAMMATION IN OBESE WOMEN. Biol Trace Elem Res 201, 663–676 (2023). https://doi.org/10.1007/s12011-022-03209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03209-3

Keyword

Navigation