Skip to main content
Log in

Use of Microscopic Characteristics and Multielemental Fingerprinting Analysis to Trace Three Different Cultivation Modes of Medicinal and Edible Dendrobium officinale in China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The traceability of different cultivation modes is critical for ensuring the commercial viability of high-value Dendrobium officinale. In this study, by means of polarizing microscopy, SEM–EDX, ICP-MS and ICP-AES, the possibility of combining microscopic characteristics, multielemental analysis and multivariate statistical authenticity analysis was realized to determine the origins of the fresh stem and dried stem powder of D. officinale derived from three different cultivation modes from six provinces of China. The microscopic structure, chemical elements on the surface of the main microstructures and concentrations of Ca, K, Ba, Cs, As and Cu varied among specimens derived from different cultivation modes. The fresh stems of D. officinale derived from different cultivation modes can be effectively and quickly identified by various microscopic characteristics and different contents of Ca on the surface of the parenchyma, phloem and xylem. Meanwhile, linear discriminant analysis showed that 98.1% of the dried stem powder samples were correctly classified, and the accuracy of cross-validation was 95.3%. This study facilitated an effective integrated method for determining the traceability of the fresh stem and dried stem powder of D. officinale derived from three different cultivation modes. This approach offers a potential method for identifying the origins of medicinal plants derived from different cultivation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code Availability

Not applicable.

References

  1. Karoui R, Dufour É, De Baerdemaeker J (2007) Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chem 101(3):1305–1314. https://doi.org/10.1016/j.foodchem.2006.01.028

    Article  CAS  Google Scholar 

  2. Kwon YK, Bong YS, Lee KS, Hwang GS (2014) An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and 1H NMR analysis. Food Chem 161:168–175. https://doi.org/10.1016/j.foodchem.2014.03.124

    Article  CAS  Google Scholar 

  3. Gonzalvez A, Armenta S, De La Guardia M (2009) Trace-element composition and stable-isotope ratio for discrimination of foods with Protected Designation of Origin. Trends Analyt Chem 28(11):1295–1311. https://doi.org/10.1016/j.trac.2009.08.001

    Article  CAS  Google Scholar 

  4. Fu HY, Wei LN, Chen HY, Yang XL, Kang LP, Hao QX, Zhou L, Zhan ZL, Liu Z, Yang J, Guo LP (2021) Combining stable C, N, O, H, Sr isotope and multi-element with chemometrics for identifying the geographical origins and farming patterns of Huangjing herb. J Food Compos Anal 102:103972. https://doi.org/10.1016/j.jfca.2021.103972

    Article  CAS  Google Scholar 

  5. Moretti M, Cossignani L, Messina F, Dominici L, Villarini M, Curini M, Marcotullio MC (2013) Antigenotoxic effect, composition and antioxidant activity of Dendrobium speciosum. Food Chem 140(4):660–665. https://doi.org/10.1016/j.foodchem.2012.10.022

    Article  CAS  Google Scholar 

  6. Xu J, Han QB, Li SL, Chen XJ, Wang XN (2013) Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem Rev 12(2):341–367. https://doi.org/10.1007/s11101-013-9310-8

    Article  CAS  Google Scholar 

  7. National Pharmacopoeia Committee (2020) Pharmacopoeia of the People’s Republic of China 1 (2020). China Medical Science Press, Beijing

    Google Scholar 

  8. Si JP, Yu QX, Song XS, Shao WJ (2013) Artificial cultivation modes for Dendrobium officinale. China J Chin Mater Med 38(4):481–484. https://doi.org/10.4268/cjcmm20130403

    Article  Google Scholar 

  9. Yu WX, Ren ZY, Zhang XF, Xing SP, Tao SC, Liu CX, Wei G, Yuan Y, Lei ZX (2018) Structural characterization of polysaccharides from Dendrobium officinale and their effects on apoptosis of HeLa cell line. Molecules 23:1–15. https://doi.org/10.3390/molecules23102484

    Article  CAS  Google Scholar 

  10. Ma YX, Sutcharitchan C, Li XD, Meng Q, Wang X, Ji S, Cui YJ (2020) Combined application of extended depth of field imaging, image stitching and polarized microscopy techniques in identification of Spatholobus suberectus. Chin Herb Med 12(4):367–374. https://doi.org/10.1016/j.chmed.2020.10.001

    Article  Google Scholar 

  11. Yu DQ, Han XJ, Shan TY, Xu R, Hu J, Cheng WX, Zha LP, Peng HS (2019) Microscopic characteristic and chemical composition analysis of three medicinal plants and surface frosts. Molecules 24(24):4548. https://doi.org/10.3390/molecules24244548

    Article  CAS  Google Scholar 

  12. Chang FR, Yu DH, Wang H, Qu SH, Wang DM, Liu XQ, Pan YN (2021) Authentication of Saposhnikovia divaricata (Trucz.) Schischk and its two adulterants based on their macroscopic morphology and microscopic characteristics. Microsc Res Tech 84(5):1089–1094. https://doi.org/10.1002/jemt.23651

    Article  CAS  Google Scholar 

  13. Lianah L, Idris F, Krisantini K (2019) Analysis of the chemical constituents and micromorphology of Bauhinia scandens using SEM-EDS techniques. Biodiversitas 20(7):2055–2060. https://doi.org/10.13057/biodiv/d200736

    Article  Google Scholar 

  14. Isrianto PL, Kristianto S, Wilujeng S (2021) Microscopic Characterization of Keji Beling Extract (Strobilanthes crispus L.) As Herbal Medicine Studies. Jurnal Biota 7(2):109–117. https://doi.org/10.19109/Biota.v7i2.8382

    Article  Google Scholar 

  15. Kulal C, Padhi RK, Venkatraj K, Satpathy KK, Mallaya SH (2020) Study on trace elements concentration in medicinal plants using EDXRF technique. Biol Trace Elem Res 198(1):293–302. https://doi.org/10.1007/s12011-020-02037-7

    Article  CAS  Google Scholar 

  16. Başgel S, Erdemoğlu SB (2006) Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 359(1–3):82–89. https://doi.org/10.1016/j.scitotenv.2005.04.016

    Article  CAS  Google Scholar 

  17. RatnaRaju M, MadhusudhanaRao PV, Seshi Reddy T, Raju MK, BrahmajiRao JS, Venkatasubramani CR (2016) Elemental analysis of medicinal plants from different sites by instrumental neutron activation analysis. Int J Bioassays 5:4892–4896. https://doi.org/10.21746/IJBIO.2016.03.0010

    Article  Google Scholar 

  18. Alhusban AA, Ata SA, Shraim SA (2019) The safety assessment of toxic metals in commonly used pharmaceutical herbal products and traditional herbs for infants in Jordanian market. Biol Trace Elem Res 187(1):307–315. https://doi.org/10.1007/s12011-018-1367-1

    Article  CAS  Google Scholar 

  19. Kilic S, Soylak M (2020) Determination of trace element contaminants in herbal teas using ICP-MS by different sample preparation method. J Food Sci Technol 57(3):927–933. https://doi.org/10.1007/s13197-019-04125-6

    Article  CAS  Google Scholar 

  20. National Pharmacopoeia Committee (2020) Pharmacopoeia of the People’s Republic of China 4 (2020). China Medical Science Press, Beijing

    Google Scholar 

  21. Raish M, Ahmad A, Alkharfy KM, Al-Jenoobi FI, Al-Mohizea AM, Mohsin K, Ahamad SR, Ali N, Shakeel F (2016) Antioxidant potential and in situ analysis of major and trace element determination of Ood-saleeb, a known unani herbal medicine by ICP-MS. Biol Trace Elem Res 172(2):521–527. https://doi.org/10.1007/s12011-015-0607-x

    Article  CAS  Google Scholar 

  22. Ahamad SR, Raish M, Yaqoob SH, Khan A, Shakeel F (2017) Metabolomics and trace element analysis of camel tear by GC-MS and ICP-MS. Biol Trace Elem Res 177:251–257. https://doi.org/10.1007/s12011-016-0889-7

  23. Wang X, Wu Y, Wu C, Wu Q, Niu Q (2018) Trace elements characteristic based on ICP-AES and the correlation of flavonoids from sparganii rhizoma. Biol Trace Elem Res 182(2):381–386. https://doi.org/10.1007/s12011-017-1090-3

    Article  CAS  Google Scholar 

  24. Lv H, Zhang YL, Sun YJ, Duan YX (2019) Elemental characteristics of Sanqi (Panax notoginseng) in Yunnan province of China: multielement determination by ICP-AES and ICP-MS and statistical analysis. Microchem J 146:931–939. https://doi.org/10.1016/j.microc.2019.02.035

    Article  CAS  Google Scholar 

  25. Beltrán M, Sánchez-Astudillo M, Aparicio R, García-González DL (2015) Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition. Food Chem 169:350–357. https://doi.org/10.1016/j.foodchem.2014.07.104

    Article  CAS  Google Scholar 

  26. Bertoldi D, Barbero A, Camin F, Caligiani A, Larcher R (2016) Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control 65:46–53. https://doi.org/10.1016/j.foodcont.2016.01.013

    Article  CAS  Google Scholar 

  27. Zhang J, Yang RD, Li YC, Ni XR (2021) The Role of Soil Mineral Multi-elements in Improving the Geographical origins Discrimination of Tea (Camellia sinensis). Biol Trace Elem Res 199:4330–4341. https://doi.org/10.1007/s12011-020-02527-8

    Article  CAS  Google Scholar 

  28. Lee AR, Gautam MK, Kim J, Shin WJ, Choi MSC, Bong YS, Hwang GS, Lee KS (2011) A multi-analytical approach for determining the geographical origins of ginseng using strontium isotopes, multielements, and 1H NMR analysis. J Agric Food Chem 59:8560–8567. https://doi.org/10.1021/jf201696j

    Article  CAS  Google Scholar 

  29. Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135:494–501. https://doi.org/10.1016/j.foodchem.2012.05.002

    Article  CAS  Google Scholar 

  30. Zhao YJ, Han BX, Peng HS, Wang X, Chu SS, Dai J, Peng DY (2017) Identification of “Huoshan shihu” Fengdou: Comparative authentication of the Daodi herb Dendrobium huoshanense and its related species by macroscopic and microscopic features. Microsc Res Tech 80(7):712–721. https://doi.org/10.1002/jemt.22856

    Article  Google Scholar 

  31. Yu KZ, Yan H, Tai HC, Zhang NP, Cheng XL, Guo ZX, Ma SC, Wei F (2017) Distinguishing the Chinese materia medica Tiepishihu from similar Dendrobium species of the same genus using histological and microscopic method. Microsc Res Tech 80(7):745–755. https://doi.org/10.1002/jemt.22860

    Article  Google Scholar 

  32. Chu C, Yin HM, Xia L, Cheng DP, Yan JZ, Zhu L (2014) Discrimination of Dendrobium officinale and its common adulterants by combination of normal light and fluorescence microscopy. Molecules 19:3718–3730. https://doi.org/10.3390/molecules19033718

    Article  CAS  Google Scholar 

  33. Zhao YJ, Zha LP, Han BX, Peng HS (2018) Compare the microscopic characteristics of stems of the 24 Dendrobium species utilized in the traditional Chinese medicine“Shihu.” Microsc Res Tech 81:1191–1202. https://doi.org/10.1002/jemt.23117

    Article  Google Scholar 

  34. Wu SJ, Liu YS, Chen TW, Ng CC, Tzeng WS, Shyu YT (2009) Differentiation of medicinal Dendrobium species (orchidaceae) using molecular markers and scanning electron microscopy. J Food Drug Anal 17(6):474–488. https://doi.org/10.1097/JCP.0b013e3181bef8a6

    Article  CAS  Google Scholar 

  35. Muruganantham S, Anbalagan G, Ramamurthy N (2009) FTIR and SEM-EDS comparative analysis of medicinal plants, Eclipta alba Hassk and Eclipta prostrata Linn. Romanian J Biophys 19(4):285–294

    Google Scholar 

  36. Spence A, Hanson RE, Grant CN, Fung LH, Rattray R (2014) Assessment of the bioavailability of cadmium in Jamaican soils. Environ Monit Assess 186(7):4591–4603. https://doi.org/10.1007/s10661-014-3722-9

    Article  CAS  Google Scholar 

  37. Rao RN, Talluri MK (2007) An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J Pharm Biomed Anal 43(1):1–13. https://doi.org/10.1016/j.jpba.2006.07.004

    Article  CAS  Google Scholar 

  38. Huang JQ, Hu X, Zhang JR, Li KX, Yan Y, Xu XB (2006) The application of inductively coupled plasma mass spectrometry in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 40(2):227–234. https://doi.org/10.1016/j.jpba.2005.11.014

    Article  CAS  Google Scholar 

  39. Ni ZL, Yu Q, Liu YH, Tang FB (2016) Identification of geographical origin of honeysuckle (Lonicera Japonica Thunb) by discriminant analysis using rare earth elements. Anal Lett 49(14):2312–2321. https://doi.org/10.1080/00032719.2016.1141212

    Article  CAS  Google Scholar 

  40. Ma GC, Zhang YB, Zhang JY, Wang GQ, Chen LY, Zhang ML, Liu T, Liu X, Lu CY (2016) Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: taking Dongting Biluochun as an example. Food Control 59:714–720. https://doi.org/10.1016/j.foodcont.2015.06.037

    Article  CAS  Google Scholar 

  41. Barbosa RM, Batista BL, Varrique RM, Coelho VA, Campiglia AD, Barbosa F (2014) The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Res Int 61:246–251. https://doi.org/10.1016/j.foodres.2013.07.060

    Article  CAS  Google Scholar 

  42. Yemane M, Chandravanshi BS, Wondimu T (2008) Levels of essential and nonessential metals in leaves of the tea plant (Camellia sinensis L.) and soil of Wushwush farms, Ethiopia. Food Chem 107(3):1236–1243. https://doi.org/10.1016/j.foodchem.2007.09.058

    Article  CAS  Google Scholar 

  43. Zhao H, Guo B, Wei Y, Zhang B (2013) Multi-element composition of wheat grain and provenance soil and their potentialities as fingerprints of geographical origins. J Cereal Sci 57(3):391–397. https://doi.org/10.1016/j.jcs.2013.01.008

    Article  CAS  Google Scholar 

  44. Fernández-Cáceres PL, Martin MJ, Pablos F, González AG (2001) Differentiation of tea (Camellia sinensis) varieties and their geographical origins according to their metal content. J Agric Food Chem 49(10):4775–4779. https://doi.org/10.1021/jf0106143

    Article  CAS  Google Scholar 

  45. Ye XH, Jin S, Wang DH, Zhao F, Yu Y, Zheng DY, Ye NX (2017) Identification of the origins of white tea based on mineral element content. Food Anal Methods 10(1):191–199. https://doi.org/10.1007/s12161-016-0568-5

    Article  Google Scholar 

  46. Sun SM, Guo BL, Wei YM, Fan MT (2011) Multi-element analysis for determining the geographical origin of mutton from different regions of China. Food Chem 124(3):1151–1156. https://doi.org/10.1016/j.foodchem.2010.07.027

    Article  CAS  Google Scholar 

  47. Luo RJ, Jiang T, Chen XB, Zheng CC, Liu HB, Yang J (2019) Determination of geographic origin of Chinese mitten crab (Eriocheir sinensis) using integrated stable isotope and multi-element analyses. Food Chem 274:1–7. https://doi.org/10.1016/j.foodchem.2018.08.104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the State Key Laboratory of Environment, Institute of Geochemistry, Chinese Academy of Sciences (Guiyang), for providing the instrumentation.

Funding

This research was financially supported by the National Natural Science Foundation of China (Project No. 82160717), the Science and Technology planning project of Guizhou Province (Project Nos. [2020]4Y073, [2019]3001–1, and [2019]4329), and Doctoral startup fund of Guizhou University of traditional Chinese medicine (Project No. [2019] No. 067).

Author information

Authors and Affiliations

Authors

Contributions

Guangying Du involved in conceptualization, methodology, investigation, writing—original draft, visualization, funding acquisition. Ruidong Yang took part in writing—review & editing, supervision. Fulin Yan involved in conceptualization and sample collection. Shenghua Wei took part in supervision and project administration. Deqiang Ren took part in revising grammar and funding acquisition. Xiangping Li involved in data curation.

Corresponding author

Correspondence to Guangying Du.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Yang, R., Yan, F. et al. Use of Microscopic Characteristics and Multielemental Fingerprinting Analysis to Trace Three Different Cultivation Modes of Medicinal and Edible Dendrobium officinale in China. Biol Trace Elem Res 201, 1006–1018 (2023). https://doi.org/10.1007/s12011-022-03196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03196-5

Keywords

Navigation