Skip to main content
Log in

Distribution of Elements in Beaver (Castor fiber) Tooth Enamel as a Sign of Environmental Adaptation: the Special Role of Fe, Co, Mg, and Fluorides (F)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript


The aim of the study was to investigate the distribution of elements (Ca, Mg, Fe, P, Zn, Na, K, Cu, Cr, Mo, Co, Se) analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES) and fluorides (F) determined potentiometrically using an ion-selective electrode in the enamel of European beaver (Castor fiber) teeth. Material for the study was tooth enamel collected from lower jaws from the skulls of the animals borrowed from museum collections (animals inhabited north-western Poland). The results of our study indicate the important role of F as an element that can affect the hardness and strength of beaver tooth enamel. Critical to the function of beaver teeth (i.e., shearing and crushing wood) is the presence of elements such as Fe in the central incisor labial aspect (orange layer of the incisor enamel), Mg in the inner side of the incisor enamel, and Co and F in the enamel of the molars. Thanks to the high content of these elements, the enamel is durable and the teeth are adapted to the nutritional and ecological characteristics of this mammalian species. Our study on the distribution of elements in the enamel of beaver teeth may also be important for the understanding of the enamel mineralization processes, determining how elements change the properties of the materials, and exploring the relationship between the environment and life history of the beaver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.


  1. Lucas PW, Philip SM, Al-Qeoud D, Al-Draihim N, Saji S, van Casteren A (2016) Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective. Evol Dev 18:54–61.

    Article  CAS  Google Scholar 

  2. Ungar PS (2010) Mammal Teeth. Origin Evolution and Diversity. John Hopkins University Press, Baltimore

  3. Antonova IN, Goncharov VD, Kipchuk AV, Bobrova YA (2014) Peculiarities of the morphological structure of the inorganic component of human dental enamel and dentin at nano-level. Morfologiia 146:52–56

    CAS  Google Scholar 

  4. Arola DD, Gao S, Zhang H, Masri R (2017) The tooth: its structure and properties. Dent Clin North Am 61:651–668.

    Article  Google Scholar 

  5. Kuczumow A, Chałas R, Nowak J, Lekki J, Sarna-Boś K, Smułek W, Jarzębski M (2021) Novel approach to tooth chemistry. Quantification of the dental-enamel junction. Int J Mol Sci 22:6003.

    Article  CAS  Google Scholar 

  6. Curzon ME, Spector PC (1983) Strontium uptake and enamel dissolution in bovine and human enamel. Caries Res 17:249–252.

    Article  CAS  Google Scholar 

  7. Moya-Costa R, Cuenca-Bescós G, Bauluz B (2019) Protocol for the reconstruction of micromammals from fossils. Two case studies: the skulls of Beremendia fissidens and Dolinasorex glyphodon. PLoS One 14:e0213174.

    Article  CAS  Google Scholar 

  8. Janiszewski P, Misiukiewicz W (2012) European beaver. Castor fiber, BTL Works, Warsaw

  9. Convention on the Conservation of European Wildlife and Natural Habitats (1979) Appendix II – Strictly Protected Fauna Species: Bern, 19.IX.1979 (ETS No. 04). Accessed 07.05.2022

  10. Convention on the Conservation of European Wildlife and Natural Habitats (1979) Appendix IV. Bern, 19.IX.1979 (ETS No. 104). Accessed 05.05.2022

  11. Convention on the Conservation of European Wildlife and Natural Habitats (1979) Appendix III – Protected Fauna Species: Bern, 19.IX.1979 (ETS No. 104). Accessed 05.05.2022

  12. UCN (2021) The IUCN Red List of threatened species. Version 2021-3. Accessed on [02.01.2022]

  13. Regulation of the Minister of Environment of 11 March 2005 on the list of game species (Journal of Laws 2005, no. 45, item 433)

  14. Convention on the Conservation of European Wildlife and Natural Habitats 1979: Bern, 19.IX.1979 (ETS No 104). Accessed on [02.01.2022].

  15. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora - consolidated version 01/01/2007. Accessed on [02.01.2022].

  16. EC (1992) Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. FFH Directive. European Council, Consolidated Version 01-01-2007. Accessed on [02.01.2022]

  17. Palczewska-Komsa M, Kalisińska E, Kosik-Bogacka D, Łanocha-Arendarczyk N, Budis H, Sokołowski S, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2015) Fluoride in the compact bone after the femoral head arthroplasty in patients from north-western Poland. Fluoride 48:93–104

    CAS  Google Scholar 

  18. Łanocha-Arendarczyk N, Kosik-Bogacka D, Kalisińska E, Sokołowski S, Lebiotkowski M, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2015) Bone fluoride content in patients after hip joint and knee surgery. Fluoride 48:244–254

    Google Scholar 

  19. Czech A (2010) Beaver. Builder and engineer. Foundation for Supporting Ecological Initiatives, Cracow.

  20. Lin WC, Chuang CC, Yao C, Tang CM (2020) Effect of cobalt precursors on cobalt-hydroxyapatite used in bone regeneration and MRI. J Dent Res 99:277–284.

    Article  CAS  Google Scholar 

  21. Stefen C (2009) Intraspecific variability of beaver teeth (Castoridae: Rodentia). Zool J Linn Soc 155:926–936.

    Article  Google Scholar 

  22. Lowater F, Murray MM (1937) Chemical composition of teeth: spectrographic analysis. Biochem J 31:837–841.

    Article  CAS  Google Scholar 

  23. Gordon LM, Cohen MJ, MacRenaris KW, Pasteris JD, Seda T, Joester D (2015) Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347:746–750.

    Article  CAS  Google Scholar 

  24. Dötsch VC, Koenigswald WV (1978) Zur Rotfäarbung von Soricidenzähnen. Z Säugetierkd 43:65–70

    Google Scholar 

  25. Suga S, Taki Y, Ogawa M (1992) Iron in the enameloid of perciform fish. J Dent Res 71:1316–1325.

    Article  CAS  Google Scholar 

  26. Anderson MA, Miller BT (2011) Early iron deposition in teeth of the Ambystoma barbouri. J Herpetol 45:336–338

    Article  Google Scholar 

  27. Gomes Rodrigues H (2015) The great variety of dental structures and dynamics in rodents: new insights into their ecological diversity. In: Cox PG, Hautier L (eds) Evolution of the rodents: advances in phylogeny, functional morphology and development. Cambridge University Press, Cambridge, pp 424–447

    Chapter  Google Scholar 

  28. Mao F, Wang Y, Meng J (2015) A systematic study on tooth enamel microstructures of Lambdopsalis bulla (multituberculate, mammalia)–implications for multituberculate biology and phylogeny. PLoS One 10:e0128243.

    Article  CAS  Google Scholar 

  29. Smith T, Codrea V (2015) Red iron-pigmented tooth enamel in a multituberculate mammal from the Late Cretaceous Transylvanian “Haţeg Island.” PLoS One 10:e0132550.

    Article  CAS  Google Scholar 

  30. Miles AE (1963) Pigmented enamel. Proc R Soc Med 56:918–920

    CAS  Google Scholar 

  31. Wen X, Paine ML (2013) Iron deposition and ferritin heavy chain (Fth) localization in rodent teeth. BMC Res Notes 6:1.

    Article  CAS  Google Scholar 

  32. Korvenkontio VA (1934) Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzahne. Histologischphyletische Studie. Ann Zool Soc Zool-botanicae Fennice Vanamo 2:1–280

    Google Scholar 

Download references


We would like to thank the University of Szczecin museum for lending materials for our research.


This study was supported by the statutory budget of the Department of Biochemistry and Medical Chemistry Pomeranian Medical University in Szczecin, Poland.

Author information

Authors and Affiliations



A.M.M. writing—review and editing; P.K. investigation; K.B. investigation; J.K. investigation; I.G. investigation; E.S. investigation; D.C. funding acquisition, supervision; I.B.B. writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Irena Baranowska-Bosiacka.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Institutional Review Board

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machoy-Mokrzyńska, A., Kupnicka, P., Barczak, K. et al. Distribution of Elements in Beaver (Castor fiber) Tooth Enamel as a Sign of Environmental Adaptation: the Special Role of Fe, Co, Mg, and Fluorides (F). Biol Trace Elem Res 201, 728–738 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: