Skip to main content

Advertisement

Log in

Trace Element Levels in Nails of Residents of Addis Ababa Are Shaped by Social Factors and Geography

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The Akaki catchment in Ethiopia is home to Addis Ababa and about five million people. Its watercourses receive a variety of wastes released by the residents and industries. River water is being used for irrigation, livestock watering, and other domestic purposes. This study tested the hypothesis that the river pollution would be reflected in higher levels of trace elements in the nails of residents living in Akaki-Kality Sub-City in the downstream, as compared to those living in Gullele Sub-City in the upstream of the Akaki catchment. Samples were taken and subsequently analysed for metals using inductively coupled plasma optical emission spectrometry (ICP-OES). The mean concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Akaki-Kality were 488 ± 49, 106 ± 10, 5.2 ± 0.3, 13 ± 1.5, 11 ± 8, 2.2 ± 0.3, 0.09 ± 0.01, and 0.16 ± 0.01 μg/g, respectively. Likewise, the concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Gullele were 1035 ± 135, 251 ± 10, 6.6 ± 0.4, 31 ± 3.7, 7.4 ± 1.7, 2.0 ± 0.3, 0.63 ± 0.01, and 0.25 ± 0.01 μg/g, respectively. Co and Cd were not detected. Contrary to the initial hypothesis, higher metal levels were found in nails of residents living in the upstream rather than the downstream area of the catchment. In particular, the concentrations of Fe (p = 0.000), Zn (p = 0.01), and Mn (p = 0.000) were significantly elevated in nails from Gullele and also high in comparison with internationally reported values. Besides, geography and social factors, especially education level, correlated to trace metals in nails. Most of the elements were significantly lower in the nails of individuals with a university degree compared to those who were illiterate or only completed primary school.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data generated are available in the manuscript and associated supplementary materials.

References

  1. Anbia M, Kargosha K, Khoshbooei S (2015) Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chem Eng Res Des 93:779–788. https://doi.org/10.1016/j.cherd.2014.07.018

    Article  CAS  Google Scholar 

  2. Dindar MH, Yaftian MR, Rostamnia S (2015) Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr (VI), As (V) and Hg (II) ions. J Environ Chem Eng 3(2):986–995. https://doi.org/10.1016/j.jece.2015.03.006

    Article  CAS  Google Scholar 

  3. Lee SH, Park SS, Parambadath S, Ha C-S (2016) Sulphonic acid functionalized periodic mesoporous organosilica with the bridged bissilylated urea groups for high selective adsorption of cobalt ion from artificial seawater. Microporous Mesoporous Mater 226:179–190. https://doi.org/10.1016/j.micromeso.2015.10.047

    Article  CAS  Google Scholar 

  4. Li X, Wang Z, Li Q, Ma J, Zhu M (2015) Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. Chem Eng J 273:630–637. https://doi.org/10.1016/j.cej.2015.03.104

    Article  CAS  Google Scholar 

  5. Mosivand S, Kazeminezhad I, Fathabad SP (2019) Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures. Microchem J 146:534–543. https://doi.org/10.1016/j.microc.2019.01.052

    Article  CAS  Google Scholar 

  6. Xie Y, Wang J, Wang M, Ge X (2015) Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. J Hazard Mater 297:66–73. https://doi.org/10.1016/j.jhazmat.2015.04.069

    Article  CAS  Google Scholar 

  7. Aschale M, Sileshi Y, Kelly-Quinn M (2019) Health risk assessment of potentially toxic elements via consumption of vegetables irrigated with polluted river water in Addis Ababa Ethiopia. Environ Syst Res 8(1):1–13. https://doi.org/10.1186/s40068-019-0157-x

    Article  Google Scholar 

  8. Aschale M, Sileshi Y, Kelly-Quinn M, Hailu D (2016) Evaluation of potentially toxic element pollution in the benthic sediments of the water bodies of the city of Addis Ababa Ethiopia. J Environ Chem Eng 4(4):4173–4183. https://doi.org/10.1016/j.jece.2016.08.033

    Article  CAS  Google Scholar 

  9. Gelan E (2021) Municipal solid waste management practices for achieving green architecture concepts in Addis Ababa Ethiopia. Technologies 9(3):48. https://doi.org/10.3390/technologies9030048

    Article  Google Scholar 

  10. Mohammed A, Elias E (2017) Domestic waste management and its environmental impacts in Addis Ababa City. Afr J Environ Sci Technol 2375–1266.

  11. Dessie BK, Gari SR, Mihret A, Desta AF, Mehari B (2021) Determination and health risk assessment of trace elements in the tap water of two Sub-Cities of Addis Ababa. Ethiopia. Heliyon 7(5):e06988. https://doi.org/10.1016/j.heliyon.2021.e06988

    Article  CAS  Google Scholar 

  12. Eliku T, Leta S (2016) Assessment of heavy metal contamination in vegetables grown using paper mill wastewater in Wonji Gefersa Ethiopia. Bull Environ Contam Toxicol 97(5):714–720. https://doi.org/10.1007/s00128-016-1915-3

    Article  CAS  Google Scholar 

  13. Yard E, Bayleyegn T, Abebe A, Mekonnen A, Murphy M, Caldwell KL, Luce R, Hunt DR, Tesfaye K, Abate M (2015) Metals exposures of residents living near the Akaki River in Addis Ababa, Ethiopia: a cross-sectional study. J Environ Public Health 2015. https://doi.org/10.1155/2015/935297

  14. Weldegebriel Y, Chandravanshi BS, Wondimu T (2012) Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicol Environ Saf 77:57–63. https://doi.org/10.1016/j.ecoenv.2011.10.011

    Article  CAS  Google Scholar 

  15. Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, Pavković M, Ochoa-Martínez A, López-Ventura D, Medeiros M, Barbier O, Pérez-Maldonado I, Sabbisetti V (2016) Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res 150:653–662. https://doi.org/10.1016/j.envres.2016.06.032

    Article  CAS  Google Scholar 

  16. Gonçalves DA, de Souza ID, Rosa ACG, Melo ESP, Goncalves A-MB, de Oliveira LCS, do Nascimento VA (2019) Multi-wavelength calibration: determination of trace toxic elements in medicine plants by ICP OES. Microchem J 146:381–386. https://doi.org/10.1016/j.microc.2019.01.021

    Article  CAS  Google Scholar 

  17. Harguinteguy CA, Cirelli AF, Pignata ML (2014) Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchem J 114:111–118. https://doi.org/10.1016/j.microc.2013.12.010

    Article  CAS  Google Scholar 

  18. Işsever H, Özdilli K, Özyildirim BA, Hapcioglu B, Ince N, Ince H, Isik E, Akcay E, Yeğenoğlu Y, Erelel M (2007) Respiratory problems in tannery workers in Istanbul. Indoor Built Environ 16(2):177–183. https://doi.org/10.1177/1420326X06076670

    Article  CAS  Google Scholar 

  19. Kornhauser C, Wrobel K, Wrobel K, Malacara JM, Nava LE, Gómez L, González R (2002) Possible adverse effect of chromium in occupational exposure of tannery workers. Ind Health 40(2):207–213. https://doi.org/10.2486/indhealth.40.207

    Article  CAS  Google Scholar 

  20. Muhammad S, Ullah R, Jadoon IA (2019) Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province Pakistan. Microchem J 149:103971. https://doi.org/10.1016/j.microc.2019.103971

    Article  CAS  Google Scholar 

  21. Setyaningsih Y, Husodo AH, Astuti I (2015) Detection of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels as a biomarker of oxidative DNA damage among home industry workers exposed to chromium. Procedia Environ Sci 23:290–296. https://doi.org/10.1016/j.proenv.2015.01.043

    Article  CAS  Google Scholar 

  22. Stern FB (2003) Mortality among chrome leather tannery workers: an update. American J Ind Med 44(2):197–206. https://doi.org/10.1002/ajim.10242

    Article  Google Scholar 

  23. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  24. Andrews NC (1999) The iron transporter DMT1. Int J Biochem Cell Biol 31(10):991–994. https://doi.org/10.1016/S1357-2725(99)00065-5

    Article  CAS  Google Scholar 

  25. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water–an electrochemical approach. Sens Actuators B Chem 213:515–533. https://doi.org/10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  26. Chen P, Culbreth M, Aschner M (2016) Exposure, epidemiology, and mechanism of the environmental toxicant manganese. Environ Sci Pollut Res 23(14):13802–13810. https://doi.org/10.1007/s11356-016-6687-0

    Article  CAS  Google Scholar 

  27. Turnlund JR, Jacob RA, Keen CL, Strain J, Kelley DS, Domek JM, Keyes WR, Ensunsa JL, Lykkesfeldt J, Coulter J (2004) Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am J Clin Nutr 79(6):1037–1044. https://doi.org/10.1093/ajcn/79.6.1037

    Article  CAS  Google Scholar 

  28. Zietz BP, Dieter HH, Lakomek M, Schneider H, Keßler-Gaedtke B, Dunkelberg H (2003) Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Sci Total Environ 302(1–3):127–144. https://doi.org/10.1016/S0048-9697(02)00399-6

    Article  CAS  Google Scholar 

  29. Büyükpınar Ç, Maltepe E, Chormey DS, San N, Bakırdere S (2017) Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry. Microchem J 132:167–171. https://doi.org/10.1016/j.microc.2017.01.024

    Article  CAS  Google Scholar 

  30. Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar M (2018) Primary concept of nickel toxicity–an overview. J Basic Clin Physiol Pharmacol 30(2):141–152. https://doi.org/10.1515/jbcpp-2017-0171

    Article  CAS  Google Scholar 

  31. Pan C-H, Jeng HA, Lai C-H (2018) Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. J Expo Sci Environ Epidemiol 28(1):76–83. https://doi.org/10.1038/jes.2016.85

    Article  CAS  Google Scholar 

  32. Annangi B, Bonassi S, Marcos R, Hernandez A (2016) Biomonitoring of humans exposed to arsenic, chromium, nickel, vanadium, and complex mixtures of metals by using the micronucleus test in lymphocytes. Mutat Res 770(Pt A):140–161. https://doi.org/10.1016/j.mrrev.2016.03.003

    Article  CAS  Google Scholar 

  33. Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z (2014) Genotoxicity of tri-and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 9(8):e103194. https://doi.org/10.1371/journal.pone.0103194

    Article  CAS  Google Scholar 

  34. Gatto NM, Kelsh MA, Mai DH, Suh M, Proctor DM (2010) Occupational exposure to hexavalent chromium and cancers of the gastrointestinal tract: a meta-analysis. Cancer Epidemiol 34(4):388–399. https://doi.org/10.1016/j.canep.2010.03.013

    Article  CAS  Google Scholar 

  35. Junaid M, Hashmi MZ, Tang Y-M, Malik RN, Pei D-S (2017) Potential health risk of heavy metals in the leather manufacturing industries in Sialkot Pakistan. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-09075-7

    Article  CAS  Google Scholar 

  36. Kifle M, Engdaw D, Alemu K, Sharma HR, Amsalu S, Feleke A, Worku W (2014) Work related injuries and associated risk factors among iron and steel industries workers in Addis Ababa, Ethiopia. Saf Sci 63:211–216. https://doi.org/10.1016/j.ssci.2013.11.020

    Article  Google Scholar 

  37. Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98(2):334–343. https://doi.org/10.1016/j.microc.2011.03.003

    Article  CAS  Google Scholar 

  38. Pizzino G, Bitto A, Interdonato M, Galfo F, Irrera N, Mecchio A, Pallio G, Ramistella V, De Luca F, Minutoli L (2014) Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol 2:686–693. https://doi.org/10.1016/j.redox.2014.05.003

    Article  CAS  Google Scholar 

  39. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  40. Orr SE, Bridges CC (2017) Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18(5):1039. https://doi.org/10.3390/ijms18051039

    Article  CAS  Google Scholar 

  41. Rebelo FM, Caldas ED (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688. https://doi.org/10.1016/j.envres.2016.08.027

    Article  CAS  Google Scholar 

  42. Zhong L, Ni R, Zhang L, He Z, Zhou H, Li L (2019) Determination of total arsenic in soil by gas chromatography after pyrolysis. Microchem J 146:568–574. https://doi.org/10.1016/j.microc.2019.01.057

    Article  CAS  Google Scholar 

  43. Fitamo D, Leta S, Belay G, Lemma B, Olsson M (2011) Phytoavailability of heavy metals and metalloids in soils irrigated with wastewater, Akaki, Ethiopia: A greenhouse study. Soil Sediment Contam: An Int J 20(7):745–766. https://doi.org/10.1080/15320383.2011.609196

    Article  CAS  Google Scholar 

  44. Yabe J, Ishizuka M, Umemura T (2010) Current levels of heavy metal pollution in Africa. J Vet Med Sci 72(10):1257–1263. https://doi.org/10.1292/jvms.10-0058

    Article  CAS  Google Scholar 

  45. Kassegne A, Berhanu T, Okonkwo J, Leta S (2019) Assessment of trace metals in water samples and tissues of African catfish (Clarias gariepinus) from the Akaki River Catchment and the Aba Samuel Reservoir, central Ethiopia. Afr J Aquat Sci 44(4):389–399. https://doi.org/10.2989/16085914.2019.1671164

    Article  CAS  Google Scholar 

  46. Aschale M, Sileshi Y, Kelly-Quinn M, Hailu D (2021) Multivariate analysis of potentially toxic elements in surface waters in Ethiopia. Appl Water Sci 11(5):1–13. https://doi.org/10.1007/s13201-021-01412-6

    Article  CAS  Google Scholar 

  47. Mekuria DM, Kassegne AB, Asfaw SL (2021) Assessing pollution profiles along Little Akaki River receiving municipal and industrial wastewaters, Central Ethiopia: implications for environmental and public health safety. Heliyon 7(7):e07526. https://doi.org/10.1016/j.heliyon.2021.e07526

    Article  CAS  Google Scholar 

  48. Woldetsadik D, Drechsel P, Keraita B, Itanna F, Gebrekidan H (2017) Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa Ethiopia. Int J Food Contam 4(1):9. https://doi.org/10.1186/s40550-017-0053-y

    Article  Google Scholar 

  49. Akele M, Kelderman P, Koning C, Irvine K (2016) Trace metal distributions in the sediments of the Little Akaki River, Addis Ababa Ethiopia. Environ Monit Assess 188(7):389. https://doi.org/10.1007/s10661-016-5387-z

    Article  CAS  Google Scholar 

  50. Mekuria DM, Kassegne AB, Asfaw SL (2020) Little Akaki River sediment enrichment with heavy metals, pollution load and potential ecological risks in downstream Central Ethiopia. Environ Syst Res 9(1):1–14. https://doi.org/10.1186/s40068-020-00188-z

    Article  Google Scholar 

  51. Aschale M, Sileshi Y, Kelly-Quinn M, Hailu D (2015) Assessment of potentially toxic elements in vegetables grown along Akaki River in Addis Ababa and potential health implications. Assessment 40

  52. He K (2011) Trace elements in nails as biomarkers in clinical research. Eur J Clin Invest 41(1):98–102. https://doi.org/10.1111/j.1365-2362.2010.02373.x

    Article  CAS  Google Scholar 

  53. Nowak B, Chmielnicka J (2000) Relationship of lead and cadmium to essential elements in hair, teeth, and nails of environmentally exposed people. Ecotoxicol Environ Saf 46(3):265–274. https://doi.org/10.1006/eesa.2000.1921

    Article  CAS  Google Scholar 

  54. Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of northern Sweden. Sci. Total Environ 262(12):21–36. https://doi.org/10.1016/S0048-9697(00)00531-3

    Article  CAS  Google Scholar 

  55. Dessie BK, Melaku S, Gari SR, Ayele BT, Desta AF, Mihret A (2020) Evaluation of toxic elements in nails of tannery workers in Addis Ababa Ethiopia. Microchem J 159:105589. https://doi.org/10.1016/j.microc.2020.105589

    Article  CAS  Google Scholar 

  56. Mehra R, Juneja M (2005) Fingernails as biological indices of metal exposure. J Bioscis 30(2):253–257. https://doi.org/10.1007/BF02703706

    Article  CAS  Google Scholar 

  57. Priya MDL, Geetha A (201l) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142(2):148–158. https://doi.org/10.1007/s12011-010-8766-2

  58. Demlie M, Wohnlich S (2006) Soil and groundwater pollution of an urban catchment by trace metals: case study of the Addis Ababa region, central Ethiopia. Environ Geology 51(3):421–431. https://doi.org/10.1007/s00254-006-0337-7

    Article  CAS  Google Scholar 

  59. Demlie M, Wohnlich S, Gizaw B, Stichler W (2007) Groundwater recharge in the Akaki catchment, central Ethiopia: evidence from environmental isotopes (δ18O, δ2H and 3H) and chloride mass balance. Hydrol Process An Int J 21(6):807–818. https://doi.org/10.1002/hyp.6273

    Article  CAS  Google Scholar 

  60. Aawsa B, Seureca T (2000) Addis Ababa water supply project stage-IIIA groundwater-phase II, modeling of Akaki well field, V1, main report. Addis Ababa Water and Sewerage Authority, Addis Ababa, Ethiopia 54.

  61. Alemayehu T (2006) Heavy metal concentration in the urban environment of Addis Ababa Ethiopia. Soil Sediment Contam 15(6):591–602. https://doi.org/10.1080/15320380600959081

    Article  CAS  Google Scholar 

  62. Qayyum MA, Shah MH (2017) Study of trace metal imbalances in the blood, scalp hair and nails of oral cancer patients from Pakistan. Sci Total Environ 593:191–201. https://doi.org/10.1016/j.scitotenv.2017.03.169

    Article  CAS  Google Scholar 

  63. Rashed M, Hossam F (2007) Heavy metals in fingernails and scalp hair of children, adults and workers from environmentally exposed areas at Aswan Egypt. Environ Bioindic 2(3):131–145. https://doi.org/10.1080/15555270701553972

    Article  CAS  Google Scholar 

  64. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. John Wiley & Sons

    Google Scholar 

  65. Berglund M, Lindberg A-L, Rahman M, Yunus M, Grandér M, Lönnerdal B, Vahter M (2011) Gender and age differences in mixed metal exposure and urinary excretion. Environ Res 111(8):1271–1279. https://doi.org/10.1016/j.envres.2011.09.002

    Article  CAS  Google Scholar 

  66. Shah MT, Begum S, Khan S (2010) Pedo and biogeochemical studies of mafic and ultramafic rocks in the Mingora and Kabal areas, Swat Pakistan. Environ Earth Sci 60(5):1091–1102. https://doi.org/10.1007/s12665-009-0253-8

    Article  CAS  Google Scholar 

  67. Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83. https://doi.org/10.1016/j.gexplo.2013.05.007

    Article  CAS  Google Scholar 

  68. Chaturvedi R, Banerjee S, Chattopadhyay P, Bhattacharjee CR, Raul P, Borah K (2014) High iron accumulation in hair and nail of people living in iron affected areas of Assam, India. Ecotoxicol Environ Saf 110:216–220. https://doi.org/10.1016/j.ecoenv.2014.08.028

    Article  CAS  Google Scholar 

  69. Samanta G, Sharma R, Roychowdhury T, Chakraborti D (2004) Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal India. Sci Total Environ 326(1–3):33–47. https://doi.org/10.1016/j.scitotenv.2003.12.006

    Article  CAS  Google Scholar 

  70. Were FH, Njue W, Murungi J, Wanjau R (2008) Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Sci Total Environ 393(2–3):376–384. https://doi.org/10.1016/j.scitotenv.2007.12.035

    Article  CAS  Google Scholar 

  71. Przybylowicz A, Chesy P, Herman M, Parczewski A, Walas S, Piekoszewski W (2012) Examination of distribution of trace elements in hair, fingernails and toenails as alternative biological materials. Application of chemometric methods. Cent Eur J Chem 10(5):1590–1599. https://doi.org/10.2478/s11532-012-0089-z

  72. Koseoglu E, Koseoglu R, Kendirci M, Saraymen R, Saraymen B (2017) Trace metal concentrations in hair and nails from Alzheimer’s disease patients: relations with clinical severity. J Trace Elem Med Biol 39:124–128. https://doi.org/10.1016/j.jtemb.2016.09.002

    Article  CAS  Google Scholar 

  73. Ilyas A, Ahmad H, Shah MH (2015) Comparative study of elemental concentrations in the scalp hair and nails of myocardial infarction patients versus controls from Pakistan. Biol Trace Elem Res 166(2):123–135. https://doi.org/10.1007/s12011-015-0259-x

    Article  CAS  Google Scholar 

  74. Slotnick MJ, Nriagu JO, Johnson MM, Linder AM, Savoie KL, Jamil HJ, Hammad AS (2005) Profiles of trace elements in toenails of Arab-Americans in the Detroit area, Michigan. Biol Trace Elem Res 107(2):113–126. https://doi.org/10.1385/BTER:107:2:113

    Article  CAS  Google Scholar 

  75. Parizanganeh A, Zamani A, Bijnavand V, Taghilou B (2014) Human nail usage as a Bio-indicator in contamination monitoring of heavy metals in Dizajabaad, Zanjan province-Iran. J Environ Health Sci Eng 12(1):147. https://doi.org/10.1186/s40201-014-0147-x

    Article  CAS  Google Scholar 

  76. Kilinc E, Buturak B, Alkan FA (2020) Level of trace elements in serum and toenail samples of patients with onychocryptosis (ingrown toenail) and onychomycosis. J Trace Elem Med Biol 61:126509. https://doi.org/10.1016/j.jtemb.2020.126509

    Article  CAS  Google Scholar 

  77. Gault AG, Rowland HA, Charnock JM, Wogelius RA, Gomez-Morilla I, Vong S, Leng M, Samreth S, Sampson ML, Polya DA (2008) Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Sci Total Environ 393(1):168–176. https://doi.org/10.1016/j.scitotenv.2007.12.028

    Article  CAS  Google Scholar 

  78. Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2018) Using hair and fingernails in binary logistic regression for bio-monitoring of heavy metals/metalloid in groundwater in intensively agricultural areas, Thailand. Environ Res 162:106–118. https://doi.org/10.1016/j.envres.2017.11.024

    Article  CAS  Google Scholar 

  79. Nguyen TPM, Nguyen TPT, Bui TH, Nguyen TH (2019) Concentration of arsenic in groundwater, vegetables, human hair and nails in mining site in the Northern Thai Nguyen province, Vietnam: human exposure and risks assessment. Hum Ecol Risk Assess: An Int J 25(3):602–613. https://doi.org/10.1080/10807039.2018.1483189

    Article  CAS  Google Scholar 

  80. Sanders AP, Miller SK, Nguyen V, Kotch JB, Fry RC (2014) Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study. BMC Public Health 14(1):114. https://doi.org/10.1186/1471-2458-14-114

    Article  CAS  Google Scholar 

  81. Hasan MM, Hosain S, Poddar P, Chowdhury AA, Katengeza EW, Roy UK (2019) Heavy metal toxicity from the leather industry in Bangladesh: a case study of human exposure in Dhaka industrial area. Environ Monit Assess 191(9):530. https://doi.org/10.1007/s10661-019-7650-6

    Article  CAS  Google Scholar 

  82. Nelson M, Adams T, Ojo C, Carroll MA, Catapane EJ (2018) Manganese toxicity is targeting an early step in the dopamine signal transduction pathway that controls lateral cilia activity in the bivalve mollusc Crassostrea virginica. Comp Biochem Physiol Part - C: Toxicol Pharmacol 213:1–6. https://doi.org/10.1016/j.cbpc.2018.07.002

    Article  CAS  Google Scholar 

  83. Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 290:111197. https://doi.org/10.1016/j.molliq.2019.111197

    Article  CAS  Google Scholar 

  84. Kazantzi V, Kabir A, Furton KG, Anthemidis A (2018) Fabric fiber sorbent extraction for on-line toxic metal determination by atomic absorption spectrometry: Determination of lead and cadmium in energy and soft drinks. Microchem J 137:285–291. https://doi.org/10.1016/j.microc.2017.11.006

    Article  CAS  Google Scholar 

  85. Brima EI, Haris PI, Jenkins RO, Polya DA, Gault AG, Harrington CF (2006) Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicol Appl Pharmacol 216(1):122–130. https://doi.org/10.1016/j.taap.2006.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Addis Ababa University for travel and logistic support during data collection and analysis.

Funding

This work was supported by the Water Security and Sustainable Development Hub which is funded by the UK Research and Innovation’s Global Challenges Research Fund (GCRF), grant number: ES/S008179/1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by Bitew K. Dessie. The first draft of the manuscript was written by Bitew K. Dessie, Bewketu Mehari, and David Werner, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bitew K. Dessie.

Ethics declarations

Ethics Approval

The study obtained ethical clearance from the Ethical Review Board of Addis Ababa University, Ethiopia (CNSDO/496/10/2018).

Consent to Participate

Written consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dessie, B.K., Mehari, B., Gari, S.R. et al. Trace Element Levels in Nails of Residents of Addis Ababa Are Shaped by Social Factors and Geography. Biol Trace Elem Res 201, 577–591 (2023). https://doi.org/10.1007/s12011-022-03181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03181-y

Keywords

Navigation