Skip to main content

Advertisement

Log in

The Effects of Vitamin D Application on NaF-Induced Cytotoxicity in Osteoblast Cells (hFOB 1.19)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was planned to evaluate the effect of vitamin D administration on cytotoxicity due to fluoride exposure in vitro. NaF (IC50) and vitamin D (proliferative) were applied to human osteoblast (hFOB 1.19) cells. The major genes of apoptotic, autophagic, and necrotic pathways were determined by RT-PCR. 2-∆∆Ct formulation was used for expression analysis. In the NaF group, caspase 3, Bax, Bad, Bak, Bclx, Atg3, Atg5, Atg6, pG2, LC3-I, LC3-II, RIP1, and RIP3 genes were increased (2.6–15 times). It was observed that the expressions of these genes approached the control when vitamin D was given together with NaF. The Bcl2 gene increased significantly (sixfold) with the effect of NaF, and was down-regulated to some extent with additional vitamin D administration, but still more than in the control. As a result, it was determined that apoptotic, necrotic, and autophagic pathways were activated as the molecular basis of the damage in the bone tissue, which was most affected by fluorine, and these genes were down-regulated and approached the control group with the addition of vitamin D. It was concluded that this is an important data to explain the molecular basis of the protective and therapeutic effect of vitamin D against fluorine toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Semiha DEDE], upon reasonable request.

References

  1. Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 403835. https://doi.org/10.5402/2012/403835

  2. Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Letter 233:236–251. https://doi.org/10.1016/j.toxlet.2013.09.005

    Article  CAS  Google Scholar 

  3. Song GH, Gao JP, Chun FW et al (2014) Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage. J Physiol Biochem 70(3):857–868. https://doi.org/10.1007/s13105-014-0354-z

    Article  CAS  Google Scholar 

  4. Wei Y, Wu Y, Zeng B, Zhang H (2014) Effects of sodium fluoride treatment in vitro on cell proliferation, BMP-2 and BMP-3 expression in human osteosarcoma MG-63 cells. Biol Trace Elem Res 162(1–3):18–25. https://doi.org/10.1007/s12011-014-0148-8

    Article  CAS  Google Scholar 

  5. Yur F, Dede S, Çiftçi-Yeğin S, Değer Y (2013) ACE activity in sheep with fluorosis. Van Vet J 24(1):25–27

    Google Scholar 

  6. Yur F, Mert N, Dede S et al (2013) Evaluation of serum lipoprotein and tissue antioxidant levels in sheep with fluorosis. Fluoride 46(2):90–96

    CAS  Google Scholar 

  7. Aydın N, Dede S, Tanrıtanır P (2014) The distribution of minerals in some tissues of sheep with fluorosis. Fluoride 47:43–48

    Google Scholar 

  8. Öngen B, Kabaroğlu C, Parıldar Z (2008) D vitamininin biyokimyasal ve laboratuvar değerlendirmesi. Türk Klin Biyokim Derg 61:23–31

    Google Scholar 

  9. Christakos S, DeLuca HF (2011) Minireview: Vitamin D: is there a role in extra skeletal health? Endocrinology 152:2930–2936. https://doi.org/10.1210/en.2011-0243

    Article  CAS  Google Scholar 

  10. Tintino SR, Morais-Tintino CD, Campina FF et al (2016) Action of cholecalciferol and alpha tocopherol on Staphylococcus aureus efflux pumps. EXCLI J 15:315–322. https://doi.org/10.17179/excli2016-277

    Article  Google Scholar 

  11. Ferrier DR (2014) Lippincott’s Illustrated Reviews: Biochemistry, 6th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  12. Yan X, Feng C, Chen Q et al (2009) Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts. Arch Toxicol 83(5):451–458. https://doi.org/10.1007/s00204-008-0365-z

    Article  CAS  Google Scholar 

  13. Liu L, Zhang Y, Gu H et al (2015) Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo. Biol Trace Elem Res 164(1):64–71. https://doi.org/10.1007/s12011-014-0192-4

    Article  CAS  Google Scholar 

  14. Yüksek V, Dede S, Taspinar M (2017) The effects of vitamin D onto the expression of caspase enzymes in osteoblastic cell line treated with sodium fluoride (NaF). FEBS J 284:354

    Google Scholar 

  15. Öz-Arslan D, Korkmaz G, Gözüaçık D (2011) Otofaji: Bir hücresel stress yanıtı ve ölüm mekanizması. Acıbadem Üniv Sag Bil Derg 2(4):184–194

    Google Scholar 

  16. Karadağ A (2016) Otofaji: Programlı hücre ölümü. Ankara Sag Hiz Derg 15(2):19–26. https://doi.org/10.1501/Ashd_0000000117

    Article  Google Scholar 

  17. Kannan K, Jain SK (2000) Oxidative and stress and apoptosis. Pathophysiology 7(3):153–163

    Article  CAS  Google Scholar 

  18. Suzuki M, Bandoski C, Bartlett JD (2015) Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 89:369–378. https://doi.org/10.1016/j.freeradbiomed.2015.08.015

    Article  CAS  Google Scholar 

  19. Verma RJ, Sherlin DM (2001) Vitamin C ameliorates fluoride-induced embryotoxicity in pregnant rats. Human Exp Toxicol 20(12):619–623. https://doi.org/10.1191/096032701718890559

    Article  CAS  Google Scholar 

  20. Susheela AK, Bhatnagar M (2002) Reversal of fluoride induced cell injury through elimination of fluoride and consumption of dietrich in essential nutrients and antioxidants. Mol Cell Biochem 234(235):335–340

    Article  Google Scholar 

  21. Gupta SK, Gupta RC, Seth AK, Gupta A (1996) Reversal of fluorosis in children. Acta Paediatr Japonica 38(5):513–519

    Article  CAS  Google Scholar 

  22. Yüksek V, Dede S, Taşpınar M, Çetin S (2017) The effects of vitamins A, D, E, and C on apoptosis and DNA damage in sodium fluoride-treated renal and osteoblast cell lines. Fluoride 50(3):300–313

    Google Scholar 

  23. Çetin S, Yur F, Taşpınar M, Dede S, Yüksek V (2017) The effects of lycopene application on sodium fluoride (NaF) applied renal cell line. Int J Second Metab 4(Special Issue 2):508–511. https://doi.org/10.21448/ijsm.377756

    Article  Google Scholar 

  24. Yang S, Wang Z, Farquharson C et al (2011) Sodium fluoride induces apoptosis and alters Bcl-2 family protein expression in MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 410(4):910–915

    Article  CAS  Google Scholar 

  25. He H, Wang H, Jiao Y et al (2015) Effect of sodium fluoride on the proliferation and gene differential expression in human RPMI8226 cells. Biol Trace Elem Res 167:11–17. https://doi.org/10.1007/s12011-015-0271-1

    Article  CAS  Google Scholar 

  26. Maj E, Filip-Psurska B, Świtalska M et al (2015) Vitamin D analogs potentiate the antitumor effect of ımatinibmesylate in a human a549 lung tumor model. Int J Mol Sci 16(11):27191–27207. https://doi.org/10.3390/ijms161126016

    Article  CAS  Google Scholar 

  27. Yüksek V, Cetin S, Usta A, Komuroglu AU, Dede S (2017) Effect of some vitamins on antioxidant/prooxidant parameters in sodium fluoride (NaF)-treated cell line (hFOB 1.19). Turk J Vet Res 1(1):1–6

    Google Scholar 

  28. Chomczynski P, Mackey K (1995) Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Analy Biochem 225:163–164

    Article  CAS  Google Scholar 

  29. Bustin SA (2004) (ed.) A-Z of Quantitati and PCR. La Jolla, CA: International University Line; USA

  30. Urut F, Dede S, Yuksek V et al (2021) In vitro evaluation of the apoptotic, autophagic, and necrotic molecular pathways of fluoride. Biol Trace Elem Res 199:3700–3706. https://doi.org/10.1007/s12011-020-02491-3

    Article  CAS  Google Scholar 

  31. Oner AC, Dede S, Yur F, Oner A (2020) The effect of vitamin C and vitamin E on DNA damage, oxidative status and some biochemical parameters in rats with experimental fluorosis. Fluoride 53(1):154–163

    CAS  Google Scholar 

  32. Xu H, Jin XQ, Jing L, Li GS (2006) Effect of sodium fluoride on the expression of bcl-2 family and osteopontin in rat renal tubular cells. Biol Trace Elem Res 109(1):55–60

    Article  CAS  Google Scholar 

  33. Deng H, Kuang P, Cui H et al (2017) Sodium fluoride induces apoptosis in mouse splenocytes by activating ROS-dependent NF-κBsignaling. Oncotarget 8(70):114428–114441. https://doi.org/10.18632/oncotarget.22826

    Article  Google Scholar 

  34. Zhou BH, Tan PP, Jia LS et al (2018) PI3K/AKT signaling pathway involvement influoride-induced apoptosis in C2C12 cells. Chemosphere 199:297–302. https://doi.org/10.1016/j.chemosphere.2018.02.057

    Article  CAS  Google Scholar 

  35. Aranda-Salomão PM, de Oliveira FA, Dos Santos DMS et al (2019) TiF4 and NaF varnishes induce low levels of apoptosis in murine and human fibroblasts through mitochondrial Bcl-2 family and death receptor signalling. Arch Oral Biol 97:245–252. https://doi.org/10.1016/j.archoralbio.2018.10.039

    Article  CAS  Google Scholar 

  36. Wen P, Wei X, Liang G et al (2019) Long-term exposure to low level offlüorideinduces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers. Environ Sci Pollut Res 26(3):2671–2680. https://doi.org/10.1007/s11356-018-3726-z

    Article  CAS  Google Scholar 

  37. Panneerselvam L, Govindarajan V, Ameeramja J et al (2015) Single oral acuteflüorideexposure causes changes in cardiac expression of oxidant and antioxidant enzymes, apoptotic and necrotic markers in male rats. Biochimie 119:27–35. https://doi.org/10.1016/j.biochi.2015.10.002

    Article  CAS  Google Scholar 

  38. Zhang YL, Luo Q, Deng Q et al (2015) Genes associated with sodiumfluoride-induced human osteoblast apoptosis. Int J Clin Exp Med 8(8):13171–13178

    CAS  Google Scholar 

  39. Zhang J, Zhu Y, Shi Y et al (2017) Fluoride-induced autophagy via the regulation of phosphorylation of mammalian targets of rapamycin in mice leydig cells. J Agri Food Chem 65(40):8966–8976. https://doi.org/10.1021/acs.jafc.7b03822

    Article  CAS  Google Scholar 

  40. Pan Y, Li Z, Wang Y et al (2019) Sodium fluoride regulates the osteo/odontogenic differentiation of stem cells from apical papilla by modulating autophagy. J Cell Physiol. https://doi.org/10.1002/jcp.28269

    Article  Google Scholar 

  41. Ekambaram P, Chennai VP (2003) Effect of vitamin D on chronic behavioral and dental toxicities of sodium fluoride in rats. Fluoride 36:189–197

    CAS  Google Scholar 

  42. Gu X, Wang Z, Gao J et al (2019) SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed tofluoride. Toxicol Vitro 57:28–38. https://doi.org/10.1016/j.tiv.2019.02.006

    Article  CAS  Google Scholar 

  43. Wang J, Yang J, Cheng X et al (2019) Calcium alleviatesfluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Agri Food Chem 67(39):10832–10843. https://doi.org/10.1021/acs.jafc.9b04295

    Article  CAS  Google Scholar 

  44. Khodapasand E, Jafarzadeh N, Farrokhi F et al (2015) Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran Biomed J 19(2):69–75. https://doi.org/10.6091/ibj.1366.2015

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out by Van Yuzuncu Yil University Scientific Research Projects Coordination Unit as project numbered TSA-2017-5949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semiha Dede.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dede, S., Taşpinar, M., Yüksek, V. et al. The Effects of Vitamin D Application on NaF-Induced Cytotoxicity in Osteoblast Cells (hFOB 1.19). Biol Trace Elem Res 201, 698–705 (2023). https://doi.org/10.1007/s12011-022-03177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03177-8

Keywords

Navigation