Skip to main content

Advertisement

Log in

Genes and Signaling Pathways Involved in the Regulation of Selenium-Enriched Yeast on Liver Metabolism and Health of Broiler (Gallus gallus)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium-enriched yeast (SeY) plays an important role in the liver health and metabolism of the broiler. However, the mechanism by which it regulates liver metabolism and the health of broilers is largely unknown. Therefore, this study was conducted to elucidate the key genes and signaling pathways involved in regulating SeY in liver metabolism and bird’s health. Thus, the mRNA expression microarray, GSE25151, was downloaded from Gene Expression Omnibus (GEO) database. GSE25151 consists of liver samples from SeY-treated and the control broilers. Six hundred four differentially expressed genes (DEGs) were identified in livers between SeY-treated and control. Gene ontology (GO) enrichment analysis indicated that those DEGs are mainly involved in metabolism-related biological processes, such as biological regulation, molecular processes, responses to stimuli, cell communication and proliferation, and growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the DEGs mainly enriched in metabolism-related signaling pathways, including PI3K, Akt, Wnt, calcium, IGF1 receptor, and MAPK signaling pathways. Moreover, many genes, such as NMUR1, NMU, and GPRC6A, might contribute to the regulation of SeY to broiler liver metabolism and health. In conclusion, the current study enhances our understanding of the regulation of SeY in liver metabolism and health of the birds and will assist studies of the molecular mechanisms of SeY regulation in chicken liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

All data of this article are included in the main text or in Supplementary Information files.

Abbreviations

Se:

Selenium

SeY:

Selenium-enriched yeast

GEO:

Gene Expression Omnibus

DETs:

Differentially expressed transcripts

DEGs:

Differentially expressed genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MDA:

Malonaldehyde

IGF1R:

Insulin-like growth factor 1 receptor

GSH:

Glutathione

MMP:

Metalloprotease

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

T-SOD:

Total superoxide dismutase

SOD:

Superoxide dismutase

iNOS:

Inducible nitric oxide synthase

TNOs:

Total nitric oxide synthase

GSH-px:

Glutathione peroxidase

AFB1:

Aflatoxin B1

LCRNA:

Labelled complementary RNA

NCBI:

National Center for Biotechnology Information Support Center database

UMAP:

Uniform Manifold Approximation and Projection

KOBAS:

KEGG Orthology-Based Annotation System

FC:

Fold change

PPI:

Protein–protein interaction

DEHP:

Di-(2-ethylhexyl) phthalate

GM:

Germacrone

HF:

Hepatic fibrosis

HSCs:

Hepatic stellate cells

DXZ:

Doxazosin

NO:

Nitric oxide

Cd:

Cadmium

References

  1. Zhang Z, Liu Q, Yang J, Yao H, Fan R, Cao C, Liu C, Zhang S, Lei X, Xu S (2020) The proteomic profiling of multiple tissue damage in chickens for a selenium deficiency biomarker discovery. Food Funct 11(2):1312–1321. https://doi.org/10.1039/c9fo02861g

    Article  CAS  Google Scholar 

  2. Yao L, Du Q, Yao H, Chen X, Zhang Z, Xu S (2015) Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals 28(2):255–265. https://doi.org/10.1007/s10534-014-9819-3

    Article  CAS  Google Scholar 

  3. Abdel-Moneim AME, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS (2022) Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res 200(2):768–779. https://doi.org/10.1007/s12011-021-02662-w

    Article  CAS  Google Scholar 

  4. Liu XT, Rehman MU, Mehmood K, Huang S, Tian X, Wu X, Zhou D (2018) Ameliorative effects of nano-elemental selenium against hexavalent chromium-induced apoptosis in broiler liver. Environ Sci Pollut Res Int 25(16): 15609–15615. https://doi.org/10.1007/s11356-018-1758-z

  5. Liu CP, Fu J, Lin SL, Wang XS, Li S (2014) Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken. Biol Trace Elem Res 159(1–3):192–198. https://doi.org/10.1007/s12011-014-0005-9

    Article  CAS  Google Scholar 

  6. Wang Y, Liu Y, Wan H, Zhu Y, Chen P, Hao P, Cheng Z, Liu J (2017) Moderate selenium dosing inhibited chromium (VI) toxicity in chicken liver. J Biochem Mol Toxicol 31(8):21916. https://doi.org/10.1002/jbt.21916

    Article  CAS  Google Scholar 

  7. Wang WZ, Tong Z, Hongjin L, Ying C, Jun X (2017) Role of hydrogen sulfide on autophagy in liver injuries induced by selenium deficiency in chickens. Biol Trace Elem Res 175(1):194–203. https://doi.org/10.1007/s12011-016-0752-x

    Article  CAS  Google Scholar 

  8. Ren Z, Deng H, Deng Y, Tang W, Wu Q, Zuo Z, Cui H, Hu Y, Yu S, Xu SY, Deng J (2021) Effects of selenium on arsenic-induced liver lesions in broilers. Biol Trace Elem Res 199(3):1080–1089. https://doi.org/10.1111/j.1439-0396.2008.00857.x

    Article  CAS  Google Scholar 

  9. Wu B, Mughal MJ, Fang J, Peng X (2019) The protective role of selenium against AFB1-Induced liver apoptosis by death receptor pathway in broilers. Biol Trace Elem Res 191(2):453–463. https://doi.org/10.1007/s12011-018-1623-4

    Article  CAS  Google Scholar 

  10. Czauderna M, Kowaiczyk J, Niedzwiedzka KM, Leng L, Cobanova K (2009) Dietary selenized yeast and CLA isomer mixture affect fatty- and amino acid concentrations in the femoral muscles and liver of rats. J Anim Feed Sci 18(2): 348–361. https://doi.org/10.22358/jafs/66399/2009

  11. Wang Y, Liu J, Chen R, Qi M, Tao D, Xu S (2020) The antagonistic effects of selenium yeast (SeY) on cadmium-induced inflammatory factors and the heat shock protein expression levels in chicken livers. Biol Trace Elem Res 198:260–268. https://doi.org/10.1016/j.ecoenv.2020.111329

    Article  CAS  Google Scholar 

  12. Mirjana T, Jovanovic M, Jokic Z, Hristov S, Vesna D (2004) Alterations in liver and kidneys of chickens fed with high levels of sodium selenite or selenized yeast. ACTA Vet-Beograd 54(2–3):191–200. https://doi.org/10.2298/AVB0403191T

    Article  Google Scholar 

  13. Chen F, Zhu L, Qiu H, Qin S (2017) Selenium-enriched Saccharomyces cerevisiae improves growth, antioxidant status and selenoprotein gene expression in Arbor Acres broilers. J Anim Physiol Anim Nutr (Berl) 101(2):259–266. https://doi.org/10.1111/jpn.12571

    Article  CAS  Google Scholar 

  14. Invernizzi G, Agazzi A, Ferroni M, Rebucci R, Fanelli A, Baldi A, Dell’Orto V, Savoini G (2013) Effects of inclusion of selenium-enriched yeast in the diet of laying hens on performance, eggshell quality, and selenium tissue deposition. Ital J Anim Sci 12(1):e1. https://doi.org/10.4081/ijas.2013.e1

    Article  CAS  Google Scholar 

  15. Wang Y, Chen H, Chang W, Chen R, Xu S, Tao D (2020) Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. Ecotoxicol Environ Saf 206:111329. https://doi.org/10.1016/j.ecoenv.2020.111329

    Article  CAS  Google Scholar 

  16. Mukai S, Mizokami A, Otani T, Sano T, Matsuda M, Chishaki S, Gao J, Kawakubo-Yasukochi T, Tang RH, Kanematsu T, Takeuchi H, Jimi E, Hirata M (2021) Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting lipolysis. J Biol Chem 296:100274. https://doi.org/10.1016/j.jbc.2021.100274

    Article  CAS  Google Scholar 

  17. Wang LF, Choi HS, Su Y, Ju J, Heo S, Yi J, Oh B, Jang Y, Seo J (2022) The docosahexaenoic acid derivatives, diHEP-DPA and TH-DPA, synthesized via recombinant lipoxygenase, ameliorate disturbances in lipid metabolism and liver inflammation in high fat diet-fed mice. Life Sci 291:120219. https://doi.org/10.1016/j.lfs.2021.120219

    Article  CAS  Google Scholar 

  18. Li H, Zhang JB, Xia Y, Pan W, Zhou DH (2021) Antagonistic effect of nano-selenium on hepatocyte apoptosis induced by DEHP via PI3K/AKT pathway in chicken liver. Ecotoxicol Environ Saf 218:112282. https://doi.org/10.1016/j.ecoenv.2021.112282

    Article  CAS  Google Scholar 

  19. Li Z, Miao ZY, Ding LL, Teng XH, Bao J (2021) Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers. Ecotoxicol Environ Saf 217:112219. https://doi.org/10.1016/j.ecoenv.2021.112219

    Article  CAS  Google Scholar 

  20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991-995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  Google Scholar 

  21. Dietrich B (2011) Gene expression profiling in differently fed farm animals [D]. Zurich: Eidgenössische Technische Hochschule Zürich. https://doi.org/10.3929/ethz-a-006712769

  22. Dietrich B, Neuenschwander S, Bucher B, Wenk C (2012) Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers. Animal 6(2):278–291. https://doi.org/10.1017/S1751731111001601

    Article  CAS  Google Scholar 

  23. Stefanini GF, Castelli E, Foschi FG, Terzi A, Biagi PL, Bordoni A, Celadon M, Hrelia S (1996) Defective calcium increase and inositol phosphate production in anti-CD3-stimulated lymphocytes of alcoholics without progressive liver disease. Alcohol Clin Exp Res 20(3):523–527. https://doi.org/10.1111/j.1530-0277.1996.tb01086.x

    Article  CAS  Google Scholar 

  24. Liu Z, Huang J, Nie Y, Qazi IH, Cao Y, Wang L, Ai Y, Zhou G, Wu K, Han H (2019) Selenium treatment enhanced clearance of salmonella in chicken macrophages (HD11). Antioxidants (Basel) 8(11):532. https://doi.org/10.3390/antiox8110532

    Article  CAS  Google Scholar 

  25. Shen Y, Xiao Y, Zhang S, Wu S, Gao L, Shi S (2019) Fe3O4 nanoparticles attenuated salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling. Front Physiol 10:1580. https://doi.org/10.3389/fphys.2019.01580

    Article  Google Scholar 

  26. Zhao ZR, Zhang QJ, Xu CJ, Wang SC, Li JH, Liu ZY (2021) Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J Cell Physiol 236(5):4024–4035. https://doi.org/10.1002/jcp.30145

    Article  CAS  Google Scholar 

  27. El-Ashmawy NE, Al-Ashmawy GM, Fakher HE, Khedr NF (2020) The role of WNT/beta-catenin signaling pathway and glutamine metabolism in the pathogenesis of CCl4-induced liver fibrosis: repositioning of niclosamide and concerns about lithium. Cytokine 136:155250. https://doi.org/10.1016/j.cyto.2020.155250

    Article  CAS  Google Scholar 

  28. Ji D, Zhao Q, Qin YW, Tong HJ, Wang QH, Yu MT, Mao CQ, Lu TL, Qiu JC, Jiang CX (2021) Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol Int 45(9):1866–1875. https://doi.org/10.1002/cbin.11607

    Article  CAS  Google Scholar 

  29. Xiu AY, Ding Q, Li Z, Zhang CQ (2021) Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway. Drug Des Dev Ther 15:3643–3659. https://doi.org/10.2147/DDDT.S317701

    Article  Google Scholar 

  30. Erdelyi M, Balogh K, Pelyhe C, Kovesi B, Nakade M, Zandoki E, Mezes M, Kovacs B (2018) Changes in the regulation and activity of glutathione redox system, and lipid peroxidation processes in short-term aflatoxin B1 exposure in liver of laying hens. J Anim Physiol Anim Nutr (Berl) 102:947–952. https://doi.org/10.1111/jpn.12896

    Article  CAS  Google Scholar 

  31. Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C (2021) Changes in glutathione content in liver diseases: an update. Antioxidants 10(3):364. https://doi.org/10.3390/antiox10030364

    Article  CAS  Google Scholar 

  32. Zhang JF, Xu LL, Wang P, Zheng XB, Hu YT, Luo JC, Zhang M, Xu MQ (2020) RNA-seq used to explore circRNA expression and identify key circRNAs during the DNA synthesis phase of mice liver regeneration. DNA Cell Biol 39(11):2059–2076. https://doi.org/10.1089/dna.2020.5750

    Article  CAS  Google Scholar 

  33. Vucenik I (2021) Bioactivity of inositol phosphates. Molecules 26(16):5042. https://doi.org/10.3390/molecules26165042

    Article  CAS  Google Scholar 

  34. Wan Y, Zhang J, Fang C, Chen J, Li J, Li J, Wu C, Wang Y (2018) Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides 101:69–81. https://doi.org/10.1016/j.peptides.2017.12.022

    Article  CAS  Google Scholar 

  35. Zhu L, Zhou YY, Zhang Z, Yin SQ, Lv DD, Wu YL, Wang BS, Mao MH, Jiao YF, Yu WF, Gao P, Yang LQ (2021) Remifentanil preconditioning promotes liver regeneration via upregulation of beta-arrestin 2/ERK/cyclin D1 pathway. Biochem Biophys Res Commun 557:69–76. https://doi.org/10.1016/j.bbrc.2021.04.008

    Article  CAS  Google Scholar 

  36. Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N, Fukue Y, Serino R, Fujihara H, Ueta Y, Ikawa M, Okabe M, Murakami N, Shirai M, Yoshimatsu H, Kangawa K, Kojima M (2004) Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 10(10):1067–1073. https://doi.org/10.1038/nm1106

    Article  CAS  Google Scholar 

  37. Nakahara K, Kojima M, Hanada R, Egi Y, Ida T, Miyazato M, Kangawa K, Murakami N (2004) Neuromedin U is involved in nociceptive reflexes and adaptation to environmental stimuli in mice. Biochem Biophys Res Commun 323(2):615–620. https://doi.org/10.1016/j.bbrc.2004.08.136

    Article  CAS  Google Scholar 

  38. Nakahara K, Akagi A, Shimizu S, Tateno S, Qattali AW, Mori K, Miyazato M, Kangawa K, Murakami N (2016) Involvement of endogenous neuromedin U and neuromedin S in thermoregulation. Biochem Biophys Res Commun 470(4):930–935. https://doi.org/10.1016/j.bbrc.2016.01.155

    Article  CAS  Google Scholar 

  39. Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais NL, Harris N, Veiga-Fernandes H (2017) Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549(7671):277–281. https://doi.org/10.1038/nature23469

    Article  CAS  Google Scholar 

  40. Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, Monticelli LA, Moriyama S, Putzel GG, Rakhilin N, Shen X, Kostenis E, Konig GM, Senda T, Carpenter D, Farber DL, Artis D (2017) The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549(7671):282–286. https://doi.org/10.1038/nature23676

    Article  CAS  Google Scholar 

  41. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco MS, Rodman C, Farouq D, Haas BJ, Tickle TL, Trombetta JJ, Baral P, Klose CSN, Mahlakoiv T, Artis D, Rozenblatt-Rosen O, Chiu IM, Levy BD, Kowalczyk MS, Regev A, Kuchroo VK (2017) The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549(7672):351–356. https://doi.org/10.1038/nature24029

    Article  CAS  Google Scholar 

  42. Delhanty PJ, Sun Y, Visser JA, van Kerkwijk A, Huisman M, van Ijcken WF, Swagemakers S, Smith RG, Themmen AP, van der Lely AJ (2010) Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. PLoS ONE 5(7):e11749. https://doi.org/10.1371/journal.pone.0011749

    Article  CAS  Google Scholar 

  43. Zhang M, Nie X, Yuan Y, Wang Y, Ma X, Yin J, Bao Y (2021) Osteocalcin alleviates nonalcoholic fatty liver disease in mice through GPRC6A. Int J Endocrinol 2021:9178616. https://doi.org/10.1155/2021/9178616

    Article  CAS  Google Scholar 

  44. Zhang S, Zhang J, An Y, Zeng X, Qin Z, Zhao Y, Xu H, Liu B (2021) Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma. Acta Pharm Sin B 11(5):1227–1245. https://doi.org/10.1016/j.apsb.2020.12.013

    Article  CAS  Google Scholar 

  45. Chen YH, Huang TY, Lin YT, Lin SY, Li WH, Hsiao HJ, Yan RL, Tang HW, Shen ZQ, Chen GC, Wu KP, Tsai TF, Chen RH (2017) VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism. Nat Commun 12(1):1322. https://doi.org/10.1038/s41467-021-21715-1

    Article  CAS  Google Scholar 

  46. Jang HN, Liu Y, Choi N, Oh J, Ha J, Zheng X, Shen H (2018) Binding of SRSF4 to a novel enhancer modulates splicing of exon 6 of Fas pre-mRNA. Biochem Biophys Res Commun 506(3):703–708. https://doi.org/10.1016/j.bbrc.2018.10.123

    Article  CAS  Google Scholar 

  47. Tan SW, Liu XZ, Chen LJ, Wu XQ, Tao L, Pan XM, Tan SY, Liu HL, Jiang J, Wu B (2021) Fas/FasL mediates NF-kappa Bp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis 12(5):474. https://doi.org/10.1038/s41419-021-03749-x

    Article  CAS  Google Scholar 

  48. Jedrzejuk D, Laczmanski L, Kuliczkowska J, Lenarcik A, Trzmiel-Bira A, Hirnle L, Dorobisz U, Milewicz A, Lwow F, Urbanovych A, Sloka N (2015) Selected CNR1 polymorphisms and hyperandrogenemia as well as fat mass and fat distribution in women with polycystic ovary syndrome. Gynecol Endocrinol 31:36–39. https://doi.org/10.3109/09513590.2014.946899

    Article  CAS  Google Scholar 

  49. Gawlinski D, Gawlinska K, Smaga I (2021) Maternal high-fat diet modulates CNR1 gene expression in male rat offspring. Nutrients 13(8):2885. https://doi.org/10.3390/nu13082885

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of Anhui Provincial Education Department (No. KJ2020A0083), Talent Introduction Program of Anhui Science and Technology University (No. DKYJ202003), the Open Project of Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (No. AHZDSYS2019-01), Science and Technology Planning Projects of Tongren City (No. 2016–17-4 and 2017–47-91), and the Open Project of Longyan University & Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology (No. ZDSYS2020004).

Author information

Authors and Affiliations

Authors

Contributions

XF Li conceived the study. XF Li and JL Hua analyzed the results, SJ Wang and ZZ Hu prepared the figures and tables. B Yang wrote the manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Bing Yang.

Ethics declarations

Consent to Participate

All authors agreed to share this manuscript.

Consent for Publication

All authors agreed to the publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hua, J., Wang, S. et al. Genes and Signaling Pathways Involved in the Regulation of Selenium-Enriched Yeast on Liver Metabolism and Health of Broiler (Gallus gallus). Biol Trace Elem Res 201, 387–402 (2023). https://doi.org/10.1007/s12011-022-03150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03150-5

Keywords

Navigation