Skip to main content
Log in

Effects of Sodium Monensin on Copper Metabolism of Brazilian Santa Inês Sheep Submitted to Different Dietary Copper

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the influence of sodium monensin on the hepatic accumulation of copper in sheep. Twenty-four Santa Inês crossbred sheep were used and allocated in a 2 × 2 factorial experiment with six repetitions and considering the factors dietary copper (basal and high) and supplementation (with and without sodium monensin). Thus, four homogeneous groups were formed: control (basal diet); monensin (Mon), 30 ppm of monensin; copper (Cu), 10 10 mg/kg BW per day of copper; monensin + copper (MonCu). The experimental period lasted 14 weeks. Liver and bile samples were collected at the beginning and end of the experiment to determine mineral element concentrations, and weekly blood samples for biochemical, hematological, and mineral evaluation. Liver copper concentrations at the beginning of the experiment did not vary between groups, while mean liver copper concentrations at the end of the experiment were higher in the MonCu, Cu, and Mon groups when compared to the control. At the end of the study, hepatic copper concentration was influenced by copper (p = 0.0001) and monensin (p = 0.0003) supplementation. Copper-supplemented groups had reduced liver iron contents (p = 0.0287) and increased copper concentrations in bile. The biochemical evaluation showed increased serum GGT and AST activity (p < 0.05) in the Cu and MonCu groups from the eleventh week on compared to the control and Mon groups. The increase in activity of these enzymes was influenced by copper supplementation (p = 0.0340). Monensin interferes positively with the hepatic accumulation of copper and the supplementation of this additive may predispose sheep to copper poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All the raw data collected in this research is fully and completely available upon request to the corresponding author.

References

  1. Ramírez-López A, Figueroa-Sandoval B, Figueroa-Rodríguez KA, Ramírez-Valverde B (2020) Structure and concentration of the global sheep meat market. Rev Bras Zootec 49:. https://doi.org/10.37496/RBZ4920190033

  2. Almeida TL, Brum KB, Lemos RAA et al (2013) Doenças de ovinos diagnosticadas no Laboratório de Anatomia Patológica Animal da Universidade Federal de Mato Grosso do Sul (1996–2010). Pesqui Veterinária Bras 33:21–29. https://doi.org/10.1590/S0100-736X2013000100005

    Article  Google Scholar 

  3. Rissi DR, Pierezan F, Oliveira Filho JC et al (2010) Doenças de ovinos da região Central do Rio Grande do Sul: 361 casos. Pesqui Veterinária Bras 30:21–28. https://doi.org/10.1590/S0100-736X2010000100004

    Article  Google Scholar 

  4. Hill GM, Shannon MC (2019) Copper and zinc nutritional issues for agricultural animal production. Biol Trace Elem Res 188:148. https://doi.org/10.1007/S12011-018-1578-5

    Article  CAS  Google Scholar 

  5. Shen X, Min X, Zhang S et al (2020) Effect of heavy metal contamination in the environment on antioxidant function in Wumeng semi-fine wool sheep in Southwest China. Biol Trace Elem Res 198:505–514. https://doi.org/10.1007/S12011-020-02081-3

    Article  CAS  Google Scholar 

  6. Song CJ, Gan S (2020) Shen X (2020) Effects of nano-copper poisoning on immune and antioxidant function in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 1982(198):515–520. https://doi.org/10.1007/S12011-020-02085-Z

    Article  Google Scholar 

  7. Cousins RJ (1985) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309. https://doi.org/10.1152/physrev.1985.65.2.238

    Article  CAS  Google Scholar 

  8. López-Alonso M, Prieto F, Miranda M et al (2005) Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain. Vet J 170:332–338. https://doi.org/10.1016/j.tvjl.2004.07.007

    Article  CAS  Google Scholar 

  9. Minervino AHH, Barrêto Júnior RA, Ferreira RNF et al (2009) Clinical observations of cattle and buffalos with experimentally induced chronic copper poisoning. Res Vet Sci 87:473–478. https://doi.org/10.1016/j.rvsc.2009.05.002

    Article  CAS  Google Scholar 

  10. Ortolani EL, Machado CH, Minervino AHH et al (2011) Clinical observations and acid-base imbalances in sheep during chronic copper poisoning. Semin Agrar 32:1123–1132. https://doi.org/10.5433/1679-0359.2011v32n3p1123

    Article  CAS  Google Scholar 

  11. Minervino AHH, Barrêto Jr RA, Ferreira RNF et al (2009) Accumulative copper poisoning in buffaloes. Semin Agrar 30:407–416

  12. Howell JM, Gawthorne JM (1987) Copper in animals and man, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  13. Suttle NF (2010) Mineral nutrition of livestock. CABI, Cambridge

    Book  Google Scholar 

  14. Humann-Ziehank E, Coenen M, Ganter M, Bickhardt K (2001) Long-term observation of subclinical chronic copper poisoning in two sheep breeds. J Vet Med Ser A Physiol Pathol Clin Med 48:429–439. https://doi.org/10.1046/j.1439-0442.2001.00376.x

    Article  CAS  Google Scholar 

  15. Reis LF, Sousa RS, Oliveira FLC et al (2018) Comparative assessment of probiotics and monensin in the prophylaxis of acute ruminal lactic acidosis in sheep. BMC Vet Res 14:9. https://doi.org/10.1186/s12917-017-1264-4

    Article  CAS  Google Scholar 

  16. Araújo JS, Perez JRO, Paiva PCA et al (2006) Efeito da monensina sódica no consumo de alimentos e pH ruminal em ovinos. Arch Vet Sci 11:39–43. https://doi.org/10.5380/AVS.V11I1.5619

    Article  Google Scholar 

  17. Horton GMJ, Stockdale PHG (1981) Lasalocid and monensin in finishing diets for early weaned lambs with naturally occurring coccidiosis. Am J Vet Res 42:433–436

    CAS  Google Scholar 

  18. Elsasser TH (1984) Potential interactions of ionophore drugs with divalent cations and their function in the animal body. J Anim Sci 59:845–853. https://doi.org/10.2527/JAS1984.593845X

    Article  CAS  Google Scholar 

  19. Starnes SR, Spears JW, Froetschel MA, Croom WJ (1984) Influence of monensin and lasalocid on mineral metabolism and ruminal urease activity in steers. J Nutr 114:518–525. https://doi.org/10.1093/JN/114.3.518

    Article  CAS  Google Scholar 

  20. van Ryssen JBJ, Barrowman PR (1987) Effect of ionophores on the accumulation of copper in the livers of sheep. Anim Sci 44:255–261. https://doi.org/10.1017/S0003356100018626

    Article  Google Scholar 

  21. Ivan M, M de S Dayrell M, Hidiroglou M (1992) Effects of bentonite and monensin on selected elements in the stomach and liver of fauna-free and faunated sheep. J Dairy Sci 75:201–208. https://doi.org/10.3168/jds.S0022-0302(92)77754-6

    Article  CAS  Google Scholar 

  22. Dehghani SN, Ghadrdani AM (1995) Bovine rumenotomy: comparison of four surgical techniques. Can Vet J 36:693

    CAS  Google Scholar 

  23. Minervino AHH, Barrêto Júnior RA, Rodrigues FAML et al (2009) Biópsia hepática por laparotomia paracostal em bovinos e búfalos. Ciência Rural 39:798–802. https://doi.org/10.1590/S0103-84782009000300025

    Article  Google Scholar 

  24. Ortolani EL, Maruta CA, Barrêto Junior RA et al (2020) Metabolic profile of steers subjected to normal feeding, fasting, and re-feeding conditions. Vet Sci 7:95. https://doi.org/10.3390/VETSCI7030095

    Article  Google Scholar 

  25. Minervino AHH, López-Alonso M, BarrêtoJúnior RA et al (2018) Dietary zinc supplementation to prevent chronic copper poisoning in sheep. Animals 8:227. https://doi.org/10.3390/ani8120227

    Article  Google Scholar 

  26. Luna D, Miranda M, Minervino AHH et al (2019) Validation of a simple sample preparation method for multielement analysis of bovine serum. PLoS ONE 14:e0211859. https://doi.org/10.1371/journal.pone.0211859

    Article  CAS  Google Scholar 

  27. Radostits OM, Gay CC, Hinchcliff KW, Constable PD (2007) Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats, and horses, 10th edn. Saunders Elsevier, London

    Google Scholar 

  28. Marques AVS, Soares PC, Riet-Correa F et al (2011) Teores séricos e hepáticos de cobre, ferro, molibdênio e zinco em ovinos e caprinos no estado de Pernambuco. Pesqui Vet Bras 31:398–406. https://doi.org/10.1590/S0100-736X2011000500006

    Article  Google Scholar 

  29. Kirk DJ, Greene LW, Schelling GT, Byers FM (1985) Effects of monensin on Mg, Ca, P and Zn metabolism and tissue concentrations in lambs. J Anim Sci 60:1485–1490. https://doi.org/10.2527/jas1985.6061485x

    Article  CAS  Google Scholar 

  30. Gooneratne SR, Howell JMC, Aughey E (1986) An ultrastructural study of the kidney of normal, copper poisoned and thiomolybdate-treated sheep. J Comp Pathol 96:593–612. https://doi.org/10.1016/0021-9975(86)90057-5

    Article  CAS  Google Scholar 

  31. Sousa IKF, Hamad Minervino AH, Sousa RDS et al (2012) Copper deficiency in sheep with high liver iron accumulation. Vet Med Int 2012:207950. https://doi.org/10.1155/2012/207950

    Article  CAS  Google Scholar 

  32. Spears JW (1990) Ionophores and nutrient digestion and absorption in ruminants. J Nutr 120:632–638. https://doi.org/10.1093/jn/120.6.632

    Article  CAS  Google Scholar 

  33. Minervino AHH, Barrêto Júnior RA, Queiroz GF et al (2008) Predictive values of aspartate aminotransferase and gamma-glutamyl transferase for the hepatic accumulation of copper in cattle and buffalo. J Vet Diagn Invest 20:791–795

    Article  Google Scholar 

  34. Antonelli AC (2007) Avaliação do uso de um sal mineral rico em molibdênio na prevenção da intoxicação cúprica acumulativa em ovinos. Thesis, Universidade de São Paulo

  35. Minervino AHH (2011) Avaliação de crescentes teores de zinco dietético no metabolismo do cobre e na prevenção de intoxicação cúprica em ovinos. Thesis, Universidade de São Paulo

  36. Ting W, Shen X (2020) Response of Wumeng semi-fine wool sheepto copper-contaminated environment. Polish J Environ Stud 29:2917–2924. https://doi.org/10.15244/PJOES/111881

    Article  Google Scholar 

Download references

Acknowledgements

AHHM is grateful to CNPq for his research productivity fellowship.

Funding

This research was funded by The São Paulo Research Foundation—FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Humberto Hamad Minervino.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures and animal handling followed the ethical principles in animal experimentation, adopted by the present study which was approved by the Ethics Committee on Animal Research of the School of Veterinary Medicine and Animal Science, University of São Paulo.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, F.A.M.L., Sousa, R.d., Minervino, A.H.H. et al. Effects of Sodium Monensin on Copper Metabolism of Brazilian Santa Inês Sheep Submitted to Different Dietary Copper. Biol Trace Elem Res 201, 196–203 (2023). https://doi.org/10.1007/s12011-022-03132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03132-7

Keywords

Navigation