Skip to main content

Advertisement

Log in

Multi-element Analysis of Honey from Amhara Region-Ethiopia for Quality, Bioindicator of Environmental Pollution, and Geographical Origin Discrimination

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Honey is a widely utilized sweetener containing mainly sugars with many other minor ingredients such as metallic elements. The analysis aimed to develop a chemometric model for tracing the geographical origin, evaluating nutritional quality, assessing pollution effect, and searching for marker metals for the region’s honey. Forty-seven honey samples were collected directly from the apiarists at seven administrative zones. The contents of 14 metals were analyzed using inductively coupled plasma optical emission spectrometry after standard sample digestion. The findings showed us the major elements ranged from 24.8 to 1996 mg/kg of the honey sample with K > Ca > Na > Mg. The minimum and maximum values for the trace metals were 2.35 mg/kg and 163 mg/kg, respectively, in the order of Fe > Cr > Zn > Ni > Mn > Cu > Co. From this data, the region’s honey has its own contribution as a source of major and trace elements. Furthermore, mean values for the toxic heavy metals were 0.57 to 1.85 for Pb, 1.03 to 1.21 for Cd, and 2.85 to 6.21 for As in mg/kg. Thus, the pollution level in the environment seems to be at an alarming rate. Using principal components analysis (PCA), the first four principal components explained 80.16% of the total variation. The region’s honey was best classified into five major clusters using linear discriminant analysis (LDA) with an average discrimination power of 89.91%. The LDA sorting model was verified by the cross-validation method. The verification revealed that the model has 92.11% recognition power and 93.33% prediction ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Codex Alimentarius Commission (1987) “Revised Codex Standard for Honey Codex Stan 12-1981, Rev. 1 (1987), Rev. 2 (2001),” Codex Standard, Vol. 12. 1981, pp. 1–7.

  2. Council EU (2002) Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur Communities L 10:47–52

    Google Scholar 

  3. Aghamirlou HM, Khadem M, Rahmani A, Sadeghian M, Mahvi AH, Akbarzadeh A, Nazmara S (2015) Heavy metals determination in honey samples using inductively coupled plasma-optical emission spectrometry. J Environ Health Sci Eng 13(1):1–8. https://doi.org/10.1186/s40201-015-0189-8

    Article  CAS  Google Scholar 

  4. Voica C, Iordache AM, Ionete RE (2020) Multielemental characterization of honey using inductively coupled plasma mass spectrometry fused with chemometrics. J Mass Spectrom 55(7):e4512. https://doi.org/10.1002/jms.4512

    Article  CAS  PubMed  Google Scholar 

  5. Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Lamas L, Martínez Flórez S, Agudo Toyos P (2018) Phenolic compounds in honey and their associated health benefits: a review. J Molecules 23(9):2322

    Article  Google Scholar 

  6. Dhahir SA, Hemed AH (2015) Determination of heavy metals and trace element levels in honey samples from different regions of Iraq and compared with other kind. Am J Applied Chem 3(3):83–92. https://doi.org/10.11648/j.ajac.20150303.11

    Article  CAS  Google Scholar 

  7. Deneulin P, Reverdy C, Rébénaque P, Danthe E, Mulhauser B (2018) Evaluation of the Pivot Profile©, a new method to characterize a large variety of a single product: Case study on honeys from around the world. Food Res Int 106:29–37. https://doi.org/10.1016/j.foodres.2017.12.044

    Article  PubMed  Google Scholar 

  8. Gohar A, Shakeel M (2020) Assessment of environmental impact on essential and toxic elements composition in natural honeys by using inductively coupled plasma mass spectrometry. Environ Sci Pollut Res 28(13):15794–15805. https://doi.org/10.1007/s11356-020-11688-x

    Article  CAS  Google Scholar 

  9. Mračević SĐ, Krstić M, Lolić A, Ražić S (2020) Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchem J 152:104420. https://doi.org/10.1016/j.microc.2019.104420

    Article  CAS  Google Scholar 

  10. Altun SK, Dinç H, Paksoy N, Temamoğulları FK, Savrunlu M (2017) Analyses of mineral content and heavy metal of honey samples from south and east region of Turkey by using ICP-MS. Int J Anal Chem 2017:1–7. https://doi.org/10.1155/2017/6391454

    Article  CAS  Google Scholar 

  11. Bartha S, Taut I, Goji G, Vlad IA, Dinulică F (2020) Heavy metal content in poly-floral honey and potential health risk. A case study of Copșa Mică, Romania. Int J Environ Res 17 (5):1507. https://doi.org/10.3390/ijerph17051507.

  12. Bilandžić N, Sedak M, Đokić M, Bošković AG, Florijančić T, Bošković I, Kovačić M, Puškadija Z, Hruškar M, Analysis, (2019) Element content in ten Croatian honey types from different geographical regions during three seasons. J Food Compos 84:103305. https://doi.org/10.1016/j.jfca.2019.103305

    Article  CAS  Google Scholar 

  13. Díaz S, Paz S, Rubio C, Gutiérrez ÁJ, González-Weller D, Revert C, Bentabol A, Hardisson A (2018) Toxic metals and trace elements in artisanal honeys from the Canary Islands. Biol Trace Elem Res 190(1):242–250. https://doi.org/10.1007/s12011-018-1538-0

    Article  CAS  PubMed  Google Scholar 

  14. Rubio C, Paz S, Tius E, Hardisson A, Gutierrez AJ, Gonzalez-Weller D, Caballero JM, Revert C (2018) Metal contents in the most widely consumed commercial preparations of four different medicinal plants (aloe, senna, ginseng, and ginkgo) from Europe. Biol Trace Elem Res 186(2):562–567

    Article  CAS  Google Scholar 

  15. Rubio C, Paz S, Ojeda I, Gutiérrez AJ, González-Weller D, Hardisson A, Revert C (2017) Dietary intake of metals from fresh cage-reared hens’ eggs in Tenerife Canary Islands. J Food Qual 2017(4):1–11. https://doi.org/10.1155/2017/5972153

  16. Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO (2021) Quality, composition and health-protective properties of citrus honey: a review. Food Res Int, 143(2011):110268. https://doi.org/10.1016/j.foodres.2021.110268

  17. Grainger MN, Klaus H, Hewitt N, French AD (2021) Investigation of inorganic elemental content of honey from regions of North Island. N Z Food Chem 361:130110. https://doi.org/10.1016/j.foodchem.2021.130110

    Article  CAS  Google Scholar 

  18. Rodríguez-Ramos F, Marcano E, Aguiar G, Ramos-Gamero J (2020) Mineral composition of artisanal and commercial honeys from Venezuela: a comparison of sample pre-treatment strategies. SN Appl Sci 2(12):1–9. https://doi.org/10.1007/s42452-020-03917-2

    Article  CAS  Google Scholar 

  19. Hungerford NL, Tinggi U, Tan BL, Farrell M, Fletcher MT, p. health, (2020) Mineral and trace element analysis of Australian/Queensland Apis mellifera honey. Int J Environ Res 17(17):6304. https://doi.org/10.3390/ijerph17176304

    Article  CAS  Google Scholar 

  20. Ćirić J, Spirić D, Baltić T, Lazić IB, Trbović D, Parunović N, Petronijević R, Đorđević V (2021) Honey bees and their products as indicators of environmental element deposition. Biol Trace Element Res, 199(6):2312–2319.  https://doi.org/10.1007/s12011-020-02321-6.

  21. Yokel RA, Seger SE, Unrine JM (2017) Toxic and essential trace element content of commonly administered pediatric oral medications. The J Pediatr Pharmacol Ther 22(3):193–202. https://doi.org/10.5863/1551-6776-22.3.193

    Article  PubMed  Google Scholar 

  22. Zhang J, Chen H, Fan C, Gao S, Zhang Z, Bo L (2020) Classification of the botanical and geographical origins of Chinese honey based on 1H NMR profile with chemometrics. Food Res Int 137:109714. https://doi.org/10.1016/j.foodres.2020.109714

    Article  CAS  PubMed  Google Scholar 

  23. Mehdi, Y., A. Mutlaq, Q. Al-Balas, E. Azzi, L. Bouadjela, N. Taïbi, H. Dakiche, L. Touati, L. Boudriche, K. Bachari, and P. Research (2018) Physicochemical characterization and determination of chloramphenicol residues and heavy metals in Algerian honeys. Environ Sci 25(33):33322–33333. https://doi.org/10.1007/s11356-018-3241-2

    Article  CAS  Google Scholar 

  24. Di Bella G, Turco VL, Potortì AG, Bua GD, Fede MR, Dugo G, Analysis, (2015) Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J Food Compos 44:25–35. https://doi.org/10.1016/j.jfca.2015.05.003

    Article  CAS  Google Scholar 

  25. Bilandžić N, Gajger IT, Kosanović M, Čalopek B, Sedak M, Kolanović BS, Varenina I, Luburić ĐB, Varga I, Đokić M (2017) Essential and toxic element concentrations in monofloral honeys from southern Croatia. Food Chem 234:245–253. https://doi.org/10.1016/j.foodchem.2017.04.180

    Article  CAS  PubMed  Google Scholar 

  26. Davodpour R, Sobhanardakani S, Cheraghi M, Abdi N, Lorestani B (2019) Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (case study: Markazi Province, Iran). Arch Environ Contam Toxicol, 77 (3):344–358. https://doi.org/10.1007/s00244-019-00634-9

  27. Sobhanardakani S, Tayebi L, Hosseini SV (2018) Health risk assessment of arsenic and heavy metals (Cd, Cu Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ Sci Pollut Res 25(3):2664–2671. https://doi.org/10.1007/s11356-017-0705-8

    Article  CAS  Google Scholar 

  28. Squadrone S, Brizio P, Stella C, Mantia M, Pederiva S, Brusa F, Mogliotti P, Garrone A, Abete MC (2020) Trace elements and rare earth elements in honeys from the Balkans, Kazakhstan, Italy, South America, and Tanzania. Environ Sci Pollut Res 27(11):12646–12657. https://doi.org/10.1007/s11356-020-07792-7

    Article  CAS  Google Scholar 

  29. Altundag H, Albayrak S, Dundar MS, Tuzen M, Soylak M (2015) Investigation of the influence of selected soil and plant properties from Sakarya, Turkey, on the bioavailability of trace elements by applying an in vitro digestion model. Biol Trace Elem Res 168(1):276–285. https://doi.org/10.1007/s12011-015-0330-7

    Article  CAS  PubMed  Google Scholar 

  30. Simionov I-A, Cristea V, Petrea S-M, Mogodan A, Nicoara M, Baltag ES, Strungaru S-A, Faggio C, Engineering, (2019) Bioconcentration of essential and nonessential elements in Black Sea turbot (Psetta Maxima Maeotica Linnaeus, 1758) in relation to fish gender. J Mar Sci 7(12):466. https://doi.org/10.3390/jmse7120466

    Article  Google Scholar 

  31. Hernández OM, Fraga JMG, Jiménez AI, Jiménez F, Arias JJ (2005) Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. Food Chem 93(3):449–458. https://doi.org/10.1016/j.foodchem.2004.10.036

    Article  CAS  Google Scholar 

  32. Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178(1–3):739–746. https://doi.org/10.1016/j.jhazmat.2010.01.147

    Article  CAS  PubMed  Google Scholar 

  33. Magdas DA, Guyon F, Puscas R, Vigouroux A, Gaillard L, Dehelean A, Feher I, Cristea G (2021) Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem 334:127599. https://doi.org/10.1016/j.foodchem.2020.127599

    Article  CAS  PubMed  Google Scholar 

  34. Oroian M, Prisacaru A, Hretcanu EC, Stroe S-G, Leahu A, Buculei A (2016) Heavy metals profile in honey as a potential indicator of botanical and geographical origin. Int J Food Prop 19(8):1825–1836. https://doi.org/10.1080/10942912.2015.1107578

    Article  CAS  Google Scholar 

  35. Silva B, Gonzaga LV, Maltez HF, Samochvalov KB, Fett R, Costa ACO, Analysis, (2020) Elemental profiling by ICP-MS as a tool for geographical discrimination: the case of bracatinga honeydew honey. J Food Compos 96:103727. https://doi.org/10.1016/j.jfca.2020.103727

    Article  CAS  Google Scholar 

  36. Díaz S, Paz S, Rubio C, Gutiérrez ÁJ, González-Weller D, Revert C, Bentabol A, Hardisson A (2019) Toxic metals and trace elements in artisanal honeys from the Canary Islands. Biol Trace Elem Res 190(1):242–250. https://doi.org/10.1007/s12011-018-1538-0

    Article  CAS  PubMed  Google Scholar 

  37. Endaye M, Atlabachew M, Mehari B, Alemayehu M, Mengistu DA, Kerisew B (2020) Combining multi-element analysis with statistical modeling for tracing the origin of green coffee beans from Amhara Region, Ethiopia. Biol Trace Element Res, 195(2):669–678. https://doi.org/10.1007/s12011-019-01866-5

  38. Drivelos SA, Danezis GP, Halagarda M, Popek S, Georgiou CA (2021) Geographical origin and botanical type honey authentication through elemental metabolomics via chemometrics. Food Chem 338:127936. https://doi.org/10.1016/j.foodchem.2020.127936

    Article  CAS  PubMed  Google Scholar 

  39. Mehari B, Redi-Abshiro M, Chandravanshi BS, Combrinck S, Atlabachew M, McCrindle R (2016) Profiling of phenolic compounds using UPLC–MS for determining the geographical origin of green coffee beans from Ethiopia. J Food Compos Anal 45:16–25. https://doi.org/10.1016/j.jfca.2015.09.006

    Article  CAS  Google Scholar 

  40. Yayinie M, Atlabachew M, Tesfaye A, Hilluf W, Reta C (2021) Quality authentication and geographical origin classification of honey of Amhara region, Ethiopia based on physicochemical parameters. Arab J Chem 14(3):102987. https://doi.org/10.1016/j.arabjc.2021.102987

    Article  CAS  Google Scholar 

  41. Habib HM, Al Meqbali FT, Kamal H, Souka UD, Ibrahim WH (2014) Physicochemical and biochemical properties of honeys from arid regions. Food Chem 153:35–43. https://doi.org/10.1016/j.foodchem.2013.12.048

    Article  CAS  PubMed  Google Scholar 

  42. Nayik GA, Nanda V (2016) A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT Food Sci Technol 74:504–513. https://doi.org/10.1016/j.lwt.2016.08.016

    Article  CAS  Google Scholar 

  43. Kek SP, Chin NL, Tan SW, Yusof YA, Chua LS (2016) Classification of honey from its bee origin via chemical profiles and mineral content. Food Anal Methods 10(1):19–30. https://doi.org/10.1007/s12161-016-0544-0

    Article  Google Scholar 

  44. Batista B, Da Silva L, Rocha B, Rodrigues J, Berretta-Silva A, Bonates T, Gomes V, Barbosa R, Barbosa F (2012) Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Res Int 49(1):209–215. https://doi.org/10.1016/j.foodres.2012.07.015

    Article  CAS  Google Scholar 

  45. Bilandžić N, Đokić M, Sedak M, Kolanović BS, Varenina I, Končurat A, Rudan N (2011) Determination of trace elements in Croatian floral honey originating from different regions. Food Chem 128(4):1160–1164. https://doi.org/10.1016/j.foodchem.2011.04.023

    Article  CAS  Google Scholar 

  46. Bogdanov S (2006) Contaminants of bee products. Apidologie 37(1):1–18. https://doi.org/10.1051/apido:2005043

    Article  CAS  Google Scholar 

  47. Commission E (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 364(1):5–24

    Google Scholar 

  48. Jayasumana C, Fonseka S, Fernando A, Jayalath K, Amarasinghe M, Siribaddana S, Gunatilake S, Paranagama P (2015) Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springerplus 4:90–90. https://doi.org/10.1186/s40064-015-0868-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. World Data Atlas. Ethiopia - Fertilizer consumption per unit of arable land, https://knoema.com/atlas/Ethiopia/Fertilizer-consumption. 2021 [cited 2021 Dec.03, ].

  50. Elias E, Okoth P, Smaling E (2019) Explaining bread wheat (Triticum aestivum) yield differences by soil properties and fertilizer rates in the highlands of Ethiopia. Geoderma 339:126–133

    Article  CAS  Google Scholar 

  51. Hunegnaw A, Mekonnen HS, Techane MA, Agegnehu CD (2021) Prevalence and associated factors of chronic kidney disease among adult hypertensive patients at Northwest Amhara Referral Hospitals, Northwest Ethiopia, 2020. Int J Hypertens 2021:1–8

    Article  Google Scholar 

  52. Shiferaw WS, Akalu TY, Aynalem YA (2020) Chronic kidney disease among diabetes patients in Ethiopia: a systematic review and meta-analysis. Int J Nephrol 2020:1–15

    Article  Google Scholar 

  53. Bayram NE, Canli D, Gercek YC, Bayram S, Celik S, F. GÜZEL, H. Morgil, and G.C. Oz, (2020) Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. J Food Nutr Res 59(4):311–322

    CAS  Google Scholar 

  54. National Academies Press (1989) The National Academies of Sciences, Engineering and Medicine, Recommended Dietary Allowances, 10th edition. National Academy Press, Washington D.C.,  https://doi.org/10.17226/1349

  55. EFSA (2015) Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water, Panel on Contaminants in the Food Chain. EFSA J 13(2):4002

    Google Scholar 

  56. Marini M, Angouria-Tsorochidou M, Caro D, Thomsen M (1)Daily intake of heavy metals and minerals in food–a case study of four Danish dietary profiles. J Clean Prod 280, 124279.

Download references

Acknowledgements

The authors would like to thank Science College, Bahir Dar University, Ethiopia. Mr. Marie Yayinie is greatful to Debre Tabor University, Ethiopia, for sponsering his Ph.D. studuy.

Funding

This work was supported by Bahir Dar University under the Grant number “Mega Project-2019” and author Minaleshewa Atlabachew has received research support from Bahir Dar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Yayinie.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yayinie, M., Atlabachew, M. Multi-element Analysis of Honey from Amhara Region-Ethiopia for Quality, Bioindicator of Environmental Pollution, and Geographical Origin Discrimination. Biol Trace Elem Res 200, 5283–5297 (2022). https://doi.org/10.1007/s12011-021-03088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03088-0

Keywords

Navigation