Skip to main content
Log in

Dietary Copper Requirements for Aquatic Animals: A Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is a vital microelement required for the optimum growth performance and wellbeing of aquatic animals. It contributed to various biological, physiological, and metabolic function in the entire body of the aquatic animals. Further, Cu is a cofactor for several enzymes involved in the antioxidation capacity and metalloenzyme formation. Some ingredients used for aquafeed formulation include sufficient amounts of Cu that can provide aquatic animals with their requirements. Nevertheless, in some cases, external Cu sources are needed to optimize the essential needs of aquatic animals. Inorganic, organic, and nano Cu forms are included in aquafeed and result in regulated physiological and biological functions. The addition of Cu should be added at particular doses considering the species, size, duration, and environmental conditions. Water-borne Cu level should also be considered as long as aquatic animals can obtain their requirements through gills to avoid overdosing and toxicity. Several studies reported the optimum doses of Cu required for optimal growth, productivity, and health status in several aquatic animals. This review article presents the up-to-date results of Cu-related studies in aquafeed. It also helps academia design further studies to better understand the border between Cu requirements and toxicity. Besides, planning for more studies involved in the understanding of the primary mode of action of Cu in aquatic animals’ entire bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mustapha UF, Alhassan A-W, Jiang D-N, Li G-L (2021) Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Rev Aquac 13(4):2076–2091

    Article  Google Scholar 

  2. Dawood MAO (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac 13(1):642–663

    Article  Google Scholar 

  3. Agboola JO, Øverland M, Skrede A, Hansen JØ (2021) Yeast as major protein-rich ingredient in aquafeeds: a review of the implications for aquaculture production. Rev Aquac 13(2):949–970

    Article  Google Scholar 

  4. Dawood MAO, Koshio S (2020) Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev Aquac 12(2):987–1002

    Article  Google Scholar 

  5. Tacon AGJ (2020) Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture 28(1):43–56

    Article  Google Scholar 

  6. Antony Jesu Prabhu P, Schrama JW, Kaushik SJ (2016) Mineral requirements of fish: a systematic review. Rev Aquac 8(2):172–219

    Article  Google Scholar 

  7. Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151(1):185–207

    Article  CAS  Google Scholar 

  8. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MK, Ahmed HA, Alagawany M, Gewaily MS (2021) Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants 10(9):1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis DA, Gatlin DM (1996) Dietary mineral requirements of fish and marine crustaceans. Rev Fish Sci 4(1):75–99

    Article  Google Scholar 

  10. Dawood MAO, Alagawany M, Sewilam H (2021) The role of zinc microelement in aquaculture: a review. Biological Trace Element Research

  11. Malhotra N, Ger T-R, Uapipatanakul B, Huang J-C, Chen KHC, Hsiao CD (2020) Review of copper and copper nanoparticle toxicity in fish. Nanomaterials 10(6):1126

    Article  CAS  PubMed Central  Google Scholar 

  12. Sabry MIE, Stino FKR, El-Ghany WAA (2021) Copper: benefits and risks for poultry, livestock, and fish production. Trop Anim Health Prod 53(5):487

    Article  PubMed  Google Scholar 

  13. Molina-Poveda C (2016) 4 - Nutrient requirements. In: Nates SF (ed) Aquafeed formulation. Academic Press, San Diego, pp 75–216

    Chapter  Google Scholar 

  14. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 285(1):146–158

    Article  CAS  Google Scholar 

  15. Masagounder K, Ramos S, Reimann I, Channarayapatna G (2016) 6 - Optimizing nutritional quality of aquafeeds. In: Nates SF (ed) Aquafeed Formulation. Academic Press, San Diego, pp 239–264

    Chapter  Google Scholar 

  16. Scott A, Vadalasetty KP, Chwalibog A, Sawosz E (2018) Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev 7(1):69–93

    Article  CAS  Google Scholar 

  17. Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I (2016) Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  PubMed  Google Scholar 

  18. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87(5):393–403

    Article  CAS  PubMed  Google Scholar 

  19. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26(4):268–298

    Article  CAS  PubMed  Google Scholar 

  20. Rowley DA (1998) Handbook of copper compounds and applications H. Wayne Richardson, Material and Manufacturing Process 13(3):479–480

    Article  CAS  Google Scholar 

  21. Ghuglot R, Titus W, Agnihotri AS, Krishnakumar V, Krishnamoorthy G, Marimuthu N (2021) Stable copper nanoparticles as potential antibacterial agent against aquaculture pathogens and human fibroblast cell viability. Biocatal. Agric. Biotechnol 32:101932

    Article  CAS  Google Scholar 

  22. Chari N, Felix L, Davoodbasha M, Sulaiman Ali A, Nooruddin T (2017) In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal. Agric. Biotechnol 10(336):341

    Google Scholar 

  23. Hall AC, Young BW, Bremner I (1979) Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat. J Inorg Biochem 11(1):57–66

    Article  CAS  PubMed  Google Scholar 

  24. Evans GW, Majors PF, Cornatzer WE (1970) Mechanism for cadmium and zinc antagonism of copper metabolism. Biochem Biophys Res Commun 40(5):1142–1148

    Article  CAS  PubMed  Google Scholar 

  25. Gatlin DM, Phillips HF, Torrans EL (1989) Effects of various levels of dietary copper and zinc on channel catfish. Aquaculture 76(1):127–134

    Article  CAS  Google Scholar 

  26. Knox D, Cowey CB, Adron JW (1982) Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture 27(2):111–119

    Article  CAS  Google Scholar 

  27. Shi B, Lu J, Hu X, Betancor MB, Zhao M, Tocher DR, Zhou Q, Jiao L, Xu F, Jin M (2021) Dietary copper improves growth and regulates energy generation by mediating lipolysis and autophagy in hepatopancreas of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 537:736505

    Article  CAS  Google Scholar 

  28. Xu Z, Wang Y, Gul Y, Li Q, Song J, Hu M (2020) Effects of copper supplement on the immune function and blood-chemistry in adult Chinese horseshoe crab Tachypleus tridentatus. Aquaculture 515:734576

    Article  CAS  Google Scholar 

  29. El-Sharawy ME, Mahmoud AA, Soliman AA, Amer AA, Mahmoud MA, Alkafafy M, Dawood MAO (2021) Studying the influence of copper on the growth behavior, antioxidative status, and histology of the intestine and liver of striped catfish (Pangasianodon hypophthalmus). Biological Trace Element Research

  30. Gatlin DM, Wilson RP (1986) Dietary copper requirement of fingerling channel catfish. Aquaculture 54(4):277–285

    Article  CAS  Google Scholar 

  31. Lee M-H, Shiau S-Y (2002) Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol 13(4):259–270

    Article  CAS  PubMed  Google Scholar 

  32. Murai T, Andrews JW, Smith RG (1981) Effects of dietary copper on channel catfish. Aquaculture 22:353–357

    Article  CAS  Google Scholar 

  33. Abdel-Hameid N-AH, Zehra S, Khan MA (2017) Dietary copper requirement of fingerling Channa punctatus (Bloch) based on growth, feed conversion, blood parameters and whole body copper concentration. Aquac Res 48(6):2787–2797

    Article  CAS  Google Scholar 

  34. Farmer BD, Beck BH, Mitchell AJ, Rawles SD, Straus DL (2017) Dietary copper effects survival of channel catfish challenged with Flavobacterium columnare. Aquac Res 48(4):1751–1758

    Article  CAS  Google Scholar 

  35. Berntssen MHG, Lundebye AK, Maage A (1999) Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture 174(1):167–181

    Article  CAS  Google Scholar 

  36. Lin Y-H, Shie Y-Y, Shiau S-Y (2008) Dietary copper requirements of juvenile grouper Epinephelus malabaricus. Aquaculture 274(1):161–165

    Article  CAS  Google Scholar 

  37. Shiau SY, Ning YC (2003) Estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus * O. aureus. Animal Science 77(2):287–292

    Article  CAS  Google Scholar 

  38. Wang W, Mai K, Zhang W, Ai Q, Yao C, Li H, Liufu Z (2009) Effects of dietary copper on survival, growth and immune response of juvenile abalone Haliotis discus hannai Ino. Aquaculture 297(1):122–127

    Article  CAS  Google Scholar 

  39. Tan XY, Luo Z, Liu X, Xie CX (2011) Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquac Nutr 17(2):170–176

    Article  CAS  Google Scholar 

  40. Chen Q-L, Luo Z, Wu K, Huang C, Zhuo M-Q, Song Y-F, Hu W (2015) Differential effects of dietary copper deficiency and excess on lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol B: Biochem Mol Biol 184:19–28

    Article  CAS  Google Scholar 

  41. Sun S, Qin J, Yu N, Ge X, Jiang H, Chen L (2013) Effect of dietary copper on the growth performance, non-specific immunity and resistance to Aeromonas hydrophila of juvenile Chinese mitten crab Eriocheir sinensis. Fish Shellfish Immunol 34(5):1195–1201

    Article  CAS  PubMed  Google Scholar 

  42. Tang QQ, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Kuang SY, Tang L, Zhou XQ (2013) Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol Trace Elem Res 155(3):370–380

    Article  CAS  PubMed  Google Scholar 

  43. Cao J, Miao X, Xu W, Li J, Zhang W, Mai K (2014) Dietary copper requirements of juvenile large yellow croaker Larimichthys croceus. Aquaculture 432:346–350

    Article  CAS  Google Scholar 

  44. Meng F, Li M, Tao Z, Yuan L, Song M, Ren Q, Xin X, Meng Q, Wang R (2016) Effect of high dietary copper on growth, antioxidant and lipid metabolism enzymes of juvenile larger yellow croaker Larimichthys croceus. Aquaculture Reports 3:131–135

    Article  Google Scholar 

  45. Mohseni M, Pourkazemi M, Bai SC (2014) Effects of dietary inorganic copper on growth performance and immune responses of juvenile beluga Husohuso. Aquac Nutr 20(5):547–556

    Article  CAS  Google Scholar 

  46. Damasceno FM, Fleuri LF, Sartori MMP, Amorim RL, Pezzato LE, da Silva RL, Carvalho PLPF, Barros MM (2016) Effect of dietary inorganic copper on growth performance and hematological profile of Nile tilapia subjected to heat-induced stress. Aquaculture 454:257–264

    Article  CAS  Google Scholar 

  47. Luo F, Wang W, Chen M, Zheng Z, Zeng D, Hasan M, Fu Z, Shu X (2020) Synthesis and efficacy of the N-carbamoyl-methionine Copper on the growth performance, tissue mineralization, immunity, and enzymatic antioxidant capacity of nile tilapia (Oreochromis niloticus). ACS Omega 5(35):22578–22586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Li E, Zhu H, Du Z, Qin J, Chen L (2016) Dietary copper requirement of juvenile Russian sturgeon Acipenser gueldenstaedtii. Aquaculture 454:118–124

    Article  CAS  Google Scholar 

  49. Wang H, Zhu H, Wang X, Li E, Du Z, Qin J, Chen L (2018) Comparison of copper bioavailability in copper-methionine, nano-copper oxide and copper sulfate additives in the diet of Russian sturgeon Acipenser gueldenstaedtii. Aquaculture 482:146–154

    Article  CAS  Google Scholar 

  50. Moazenzadeh K, RajabiIslami H, Zamini A, Soltani M (2020) Effect of dietary inorganic copper on growth performance and some hematological indices of Siberian sturgeon Acipenserbaerii Juveniles. N. Am. J. Aquac 82(2):200–207

    Article  Google Scholar 

  51. Moazenzadeh K, RajabiIslami H, Zamini A, Soltani M (2020) Quantitative dietary copper requirement of juvenile Siberian sturgeon, Acipenser baerii, and effects on muscle composition and some enzymatic activities. Aquac. Nutr 26(4):1108–1118

    Article  CAS  Google Scholar 

  52. Domínguez D, Sarmiento P, Sehnine Z, Castro P, Robaina L, Fontanillas R, Prabhu PAJ, Izquierdo M (2019) Effects of copper levels in diets high in plant ingredients on gilthead sea bream (Sparus aurata) fingerlings. Aquaculture 507:466–474

    Article  Google Scholar 

  53. Chen K, Yamamoto FY, Gatlin Iii DM (2020) Effects of inorganic and organic dietary copper supplementation on growth performance and tissue composition for juvenile red drum (Sciaenops ocellatus L.). Aquac. Nutr 26(3):820–827

    Article  CAS  Google Scholar 

  54. Song J, Li L-Y, Chen B-B, Shan L-L, Yuan S-Y, Yu H-R (2021) Dietary copper requirements of postlarval coho salmon (Oncorhynchus kisutch). Aquaculture Nutrition

  55. Zafar N, Khan MA (2020) Dietary copper requirement of fingerling Heteropneustes fossilis for formulating copper-balanced commercial feeds. Aquac Nutr 26(2):248–260

    Article  CAS  Google Scholar 

  56. Liang H, Ji K, Ge X, Mi H, Xi B, Ren M (2020) Effects of dietary copper on growth, antioxidant capacity and immune responses of juvenile blunt snout bream (Megalobramaamblycephala) as evidenced by pathological examination. Aquac Rep 17:100296

    Article  Google Scholar 

  57. Shao X-P, Liu W-B, Lu K-L, Xu W-N, Zhang W-W, Wang Y, Zhu J (2012) Effects of tribasic copper chloride on growth, copper status, antioxidant activities, immune responses and intestinal microflora of blunt snout bream (Megalobrama amblycephala) fed practical diets. Aquaculture 338–341:154–159

    Article  Google Scholar 

  58. Davis DA, Lawrence AL, Gatlin Iii D (1993) Dietary copper requirement of Penaeusvannamei. NIPPON SUISAN GAKKAISHI 59(1):117–122

    Article  CAS  Google Scholar 

  59. Zhou Y, Zhang D, Peatman E, Rhodes MA, Liu J, Davis DA (2017) Effects of various levels of dietary copper supplementation with copper sulfate and copper hydroxychloride on Pacific white shrimp Litopenaeus vannamei performance and microbial communities. Aquaculture 476:94–105

    Article  CAS  Google Scholar 

  60. Zhou Y, Allen Davis D, Rhodes MA (2014) Comparative evaluation of copper sulfate and tribasic copper chloride on growth performance and tissue response in Pacific white shrimp Litopenaeusvannamei fed practical diets. Aquaculture 434:411–417

    Article  CAS  Google Scholar 

  61. Musharraf M, Khan MA (2022) Estimation of dietary copper requirement of fingerling Indian major carp, Labeorohita (Hamilton). Aquaculture 549:737742

    Article  CAS  Google Scholar 

  62. Bharadwaj AS, Patnaik S, Browdy CL, Lawrence AL (2014) Comparative evaluation of an inorganic and a commercial chelated copper source in Pacific white shrimp Litopenaeus vannamei (Boone) fed diets containing phytic acid. Aquaculture 422–423:63–68

    Article  Google Scholar 

  63. Lin Y-H, Shih C-C, Kent M, Shiau S-Y (2010) Dietary copper requirement reevaluation for juvenile grouper, Epinephelus malabaricus, with an organic copper source. Aquaculture 310(1):173–177

    Article  CAS  Google Scholar 

  64. Shao X-P, Liu W-B, Xu W-N, Lu K-L, Xia W, Jiang Y-Y (2010) Effects of dietary copper sources and levels on performance, copper status, plasma antioxidant activities and relative copper bioavailability in Carassius auratus gibelio. Aquaculture 308(1):60–65

    Article  CAS  Google Scholar 

  65. Mohseni M, Park G-H, Lee J-H, Okorie OE, Browdy C, Bharadwaj A, Bai SC (2012) Evaluation of toxicity of dietary chelated copper in juvenile olive flounder, Paralichthys olivaceus, Based on growth and tissue copper concentration. J World Aquaculture Soc 43(4):548–559

    Article  Google Scholar 

  66. Wang L-M, Wang J, Bharadwaj AS, Xue M, Qin Y-C, Wu X-F, Zheng Y-H, Han F (2015) Effects of dietary copper sources on growth, tissue copper accumulation and physiological responses of Japanese sea bass (Lateolabrax japonicus) (Cuvier, 1828) fed semipurified or practical diets. Aquac Res 46(7):1619–1627

    Article  CAS  Google Scholar 

  67. Yuan Y, Jin M, Luo J, Xiong J, Ward TL, Ji F, Xu G, Sun M, Zhou Q (2019) Effects of different dietary copper sources on the growth and intestinal microbial communities of Pacific white shrimp (Litopenaeus vannamei). Aquac Nutr 25(4):828–840

    Article  CAS  Google Scholar 

  68. Shi B, Yuan Y, Jin M, Betancor MB, Tocher DR, Jiao L, Song D, Zhou Q (2021) Transcriptomic and physiological analyses of hepatopancreas reveal the key metabolic changes in response to dietary copper level in Pacific white shrimp Litopenaeusvannamei. Aquaculture 532:736060

    Article  CAS  Google Scholar 

  69. Katya K, Lee S, Yun H, Dagoberto S, Browdy CL, Vazquez-Anon M, Bai SC (2016) Efficacy of inorganic and chelated trace minerals (Cu, Zn and Mn) premix sources in Pacific white shrimp, Litopenaeus vannamei (Boone) fed plant protein based diets. Aquaculture 459:117–123

    Article  CAS  Google Scholar 

  70. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Animal Nutrition 2(3):134–141

    Article  PubMed  PubMed Central  Google Scholar 

  71. Konkol D, Wojnarowski K (2018) The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J Chem 2018:5927058

    Article  Google Scholar 

  72. El Basuini MF, El-Hais AM, Dawood MAO, Abou-Zeid AE-S, El-Damrawy SZ, Khalafalla MMELS, Koshio S, Ishikawa M, Dossou S (2016) Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture 455:32–40

    Article  Google Scholar 

  73. Dawood MAO, Eweedah NM, Moustafa EM, El-Sharawy ME, Soliman AA, Amer AA, Atia MH (2020) Copper Nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biol Trace Elem Res 198(1):283–292

    Article  CAS  PubMed  Google Scholar 

  74. Afshari A, Sourinejad I, Gharaei A, Johari SA, Ghasemi Z (2021) The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothoraxzarudnyi (Nikolskii, 1897). Aquaculture 539:736638

    Article  CAS  Google Scholar 

  75. Muralisankar T, SaravanaBhavan P, Radhakrishnan S, Seenivasan C, Srinivasan V (2016) The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachiumrosenbergii post larvae. J Trace Elem Med Biol 34(39):49

    Google Scholar 

  76. Delavari NM, Gharaei A, Mirdar HJ, Davari A, Rastiannasab A (2021) Modulatory effect of dietary copper nanoparticles and vitamin C supplementations on growth performance, hematological and immune parameters, oxidative status, histology, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. O. Dawood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, M.A.O. Dietary Copper Requirements for Aquatic Animals: A Review. Biol Trace Elem Res 200, 5273–5282 (2022). https://doi.org/10.1007/s12011-021-03079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03079-1

Keywords

Navigation