Skip to main content

Advertisement

Log in

Evaluation of L-Selenomethionine on Ameliorating Cardiac Injury Induced by Environmental Ammonia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

L-Selenomethionine is one of the important organic selenium sources. The supplementation of L-selenomethionine in diets is significant to improve the health of pigs. Ammonia is a major pollutant in the atmosphere and piggery, posing a threat to human and animal health. Although ammonia exposure can damage the heart, the mechanism of cardiac toxicity by ammonia is still unknown. In this study, we investigated the mechanism of cardiac injury induced by ammonia exposure in pigs and the protective effect of L-selenomethionine on its cardiotoxicity. The results showed that the blood ammonia content of pig increased significantly in ammonia group, the expressions of energy metabolism-related genes (LDHA, PDK4, HK2, and CPTIB) and the oxidative stress indexes were significantly changed (P < 0.05), the AMPK/PPAR-γ/NF-κB signaling pathways were activated, the chromatin edge aggregation and nuclear pyknosis were observed in ultrastructure, the apoptotic cells were significantly increased (P < 0.05), and the mRNA and protein expressions of apoptosis-related genes (Bcl-2, Bax, Cyt-c, caspase-3, and caspase-9) were significantly affected (P < 0.05). The above changes were significantly alleviated in ammonia + L-selenomethionine group, but there were still significant differences compared with the C group (P < 0.05). Our results indicated that ammonia exposure could cause energy metabolism disorder and oxidative stress and induce apoptosis of cardiomyocytes through AMPK/PPAR-γ/NF-κB pathways, which could lead to cardiac injury and affect cardiac function. L-Selenomethionine could effectively alleviate the cardiac damage caused by ammonia and antagonize the cardiotoxicity of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xing H, Luan S, Sun Y, Sa R, Zhang H (2016) Effects of ammonia exposure on carcass traits and fatty acid composition of broiler meat. Anim Nutr 2:282–287

    Article  Google Scholar 

  2. Ni JQ (2015) Research and demonstration to improve air quality for the U.S. animal feeding operations in the 21st century – a critical review. Environ Pollut 200:105–119

    Article  CAS  Google Scholar 

  3. Battye W, Aneja VP, Roelle PA (2003) Evaluation and improvement of ammonia emissions inventories. Atmos Environ 37:3873–3883

    Article  CAS  Google Scholar 

  4. Ni JQ, Shi C, Liu S, Richert BT, Vonderohe CE, Radcliffe JS, (2019) Effects of antibiotic-free pig rearing on ammonia emissions from five pairs of swine rooms in a wean-to-finish experiment. Environ Int 131. https://doi.org/10.1016/j.envint.2019.104931

  5. Saraswati Sharma SK, Saxena M, Mandal TK (2019) Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi. India Atmos Res 218:34–49

    Article  Google Scholar 

  6. Chen Y, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Jia WH, Zheng Y, Li Y, Lin L, Ernberg I, Wang D, Chen W, Feng R, Huang G, Zeng YX, Adami HO, Ye W (2021) Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: a population-based case-control study. Cancer. https://doi.org/10.1002/cncr.33536

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nieder R, Benbi DK (2021) Reactive nitrogen compounds and their influence on human health: an overview. Rev Environ Health. https://doi.org/10.1515/reveh-2021-0021

    Article  PubMed  Google Scholar 

  8. Li Z, Miao Z, Ding L, Teng X, Bao J (2021) Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers. Ecotoxicol Environ Saf 217(undefined):112219. https://doi.org/10.1016/j.ecoenv.2021.112219

    Article  CAS  PubMed  Google Scholar 

  9. Duan Y, Xiong D, Wang Y, Li H, Dong Hong B, Zhang J (2021) Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei. Sci Total Environ 754(undefined):141867. https://doi.org/10.1016/j.scitotenv.2020.141867

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Zeng X, Zhang X, Liu H, Xing H (2021) Ammonia exposure induces oxidative stress and inflammation by destroying the microtubule structures and the balance of solute carriers in the trachea of pigs. Ecotoxicol Environ Saf 212:111974. https://doi.org/10.1016/j.ecoenv.2021.111974

    Article  CAS  PubMed  Google Scholar 

  11. Xia C, Zhang X, Zhang Y, Li J, Xing H (2021) Ammonia exposure causes the disruption of the solute carrier family gene network in pigs. Ecotoxicol Environ Saf 210:111870. https://doi.org/10.1016/j.ecoenv.2020.111870

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, Wang ZK, Wang ZY, Yang DB, Liu ZP, Wang L (2016) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 90(5):1193–1209

    Article  CAS  Google Scholar 

  13. Roy MJ, Vom A, Czabotar PE, Lessene G (2014) Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Brit J Pharmacol 171:1973–1987

    Article  CAS  Google Scholar 

  14. Hardie GD (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144:5179–5183

    Article  CAS  Google Scholar 

  15. Chen L, Liu T, Zhang S, Zhou J, Wang Y, Di W (2014) Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro. J Ovarian Res 7:115. https://doi.org/10.1186/s13048-014-0115-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Priebe A, Tan L, Wahl H, Kueck A, He G, Kwok R et al (2011) Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecol Oncol 122:389–395

    Article  CAS  Google Scholar 

  17. Vucetic M, Otasevic V, Korac A, Stancic A, Jankovic A, Markelic M (2011) Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: interplay of HIF-1α and AMPKα. Biochim Biophys Acta 1810:1252–1261

    Article  CAS  Google Scholar 

  18. Li H, Satriano J, Thomas JL, Miyamoto S, Sharma K, Pastor-Soler NM, Hallows KR, Singh P (2015) Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease. Am J Physiol Renal Physiol 309(5):F414–F428. https://doi.org/10.1152/ajprenal.00463.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Zhang WD, Liu XQ, Zhang PF, Hao YN, Li L, Chen L, Shen W, Tang XF, Min LJ, Meng QS, Wang SK, Yi B, Zhang HF (2016) Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci Rep 6:37884–37895

    Article  CAS  Google Scholar 

  20. Başalan Över S, Guven C, Taskin E, Çakmak A, Piner Benli P, Sevgiler Y (2021) Effects of different ammonia levels on tribenuron methyl toxicity in Daphnia magna. Arch Environ Contam Toxicol https://doi.org/10.1007/s00244-021-00841-3

  21. Liao HH, Jia XH, Liu HJ, Yang Z, Tang QZ (2017) The role of PPARs in pathological cardiac hypertrophy and heart failure. Curr Pharmaceut Des 23:1677–1686

    Article  CAS  Google Scholar 

  22. Zhao H, Wang Y, Liu Y, Yin K, Wang D, Li B, Yu H, Xing M (2021) ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-κB/iκB-α pathways regulated by proteasome. Environ Sci Technol 55:6171–6183

    Article  CAS  Google Scholar 

  23. Wang H, Zhang Y, Han Q, Xu Y, Hu G, Xing H (2020) The inflammatory injury of heart caused by ammonia is realized by oxidative stress and abnormal energy metabolism activating inflammatory pathway. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140532

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ostovar M, Akbari A, Anbardar Mohammad H, Iraji A, Salmanpour M, Hafez Ghoran S, Heydari M, Shams M (2020) Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J. Integr. Med. 18(1):59–67

    Article  Google Scholar 

  25. Wang S, Li X, Wang W, Zhang H, Xu S (2019) Application of transcriptome analysis: oxidative stress, inflammation and microtubule activity disorder caused by ammonia exposure may be the primary factors of intestinal microvilli deficiency in chicken. Sci Total Environ 696:134035. https://doi.org/10.1016/j.scitotenv.2019.134035

    Article  CAS  PubMed  Google Scholar 

  26. Moris D, Spartalis M, Spartalis E, Karachaliou GS, Karaolanis GI, Tsourouflis G, Tsilimigras DI, Tzatzaki E, Theocharis S (2017) The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann Transl Med 5(16):326. https://doi.org/10.21037/atm.2017.06.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  Google Scholar 

  28. Williams TA, Bonham LA, Bernier NJ (2017) High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish. Gen Comp Endocrinol 254:97–106

    Article  CAS  Google Scholar 

  29. Chu JH, Yan YX, Gao PC, Chen XW, Fan RF (2020) Response of selenoproteins gene expression profile to mercuric chloride exposure in chicken kidney. Res Vet Sci 133:4–11

    Article  CAS  Google Scholar 

  30. Fan RF, Liu JX, Yan YX, Wang L, Wang ZY (2020) Selenium relieves oxidative stress, inflammation, and apoptosis within spleen of chicken exposed to mercuric chloride. Poult Sci 99:5430–5439

    Article  CAS  Google Scholar 

  31. Li S, Tang T, Guo P, Zou Q, Ao X, Hu L, Tan L (2019) A meta-analysis of randomized controlled trials: efficacy of selenium treatment for sepsis. Med (Baltim) 98(9):14733. https://doi.org/10.1097/MD.0000000000014733

    Article  CAS  Google Scholar 

  32. Jin X, Xu Z, Zhao X, Chen M, Xu S (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266

    Article  CAS  Google Scholar 

  33. Feng C, Li D, Chen M, Jiang L, Liu X, Li Q, Geng C, Sun X, Yang G, Zhang L, Yao X (2019) Citreoviridin induces myocardial apoptosis through PPAR-γ-mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 311(undefined):108795. https://doi.org/10.1016/j.cbi.2019.108795

    Article  CAS  PubMed  Google Scholar 

  34. Xue C, Li Y, Lv H, Zhang L, Bi C, Dong N, Shan A, Wang J (2021) Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis. J Agr Food Chem. https://doi.org/10.1021/acs.jafc.1c02257

    Article  Google Scholar 

  35. Di Lorenzo T, Melita M, Cifoni M, Galassi DMP, Iannucci A, Biricolti S, Gori M, Baratti M (2017) Effect of ammonia on the gene expression levels of the freshwater cyclopoid Eucyclops serrulatus. Environ Toxicol Pharmacol 51:138–141

    Article  Google Scholar 

  36. Wang W, Shi Q, Wang S, Zhang H, Xu S (2020) Ammonia regulates chicken tracheal cell necroptosis via the LncRNA-107053293/MiR-148a-3p/FAF1 axis. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121626

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Zhao H, Liu Y, Li J, Nie X, Huang P, Xing M (2021) Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. Environ Pollut 274:116519. https://doi.org/10.1016/j.envpol.2021.116597

    Article  CAS  Google Scholar 

  38. Komoike Y, Matsuoka M (2019) In vitro and in vivo studies of oxidative stress responses against acrylamide toxicity in zebrafish. J Hazard Mater 365:430–439

    Article  CAS  Google Scholar 

  39. Hu X, Chi Q, Wang D, Chi X, Teng X, Li S (2018) Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. Ecotoxicol Environ Saf 64:201–209

    Article  Google Scholar 

  40. Chi Q, Chi X, Hu X, Wang S, Zhang H, Li S (2018) The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: perspectives on inflammation, oxidative stress and energy metabolism. Environ. Res. 167(undefined):1–6. https://doi.org/10.1016/j.envres.2018.06.051

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Li M, Wang R, Qian Y (2018) Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol 79:313–320

    Article  CAS  Google Scholar 

  42. Yadu B, Chandrakar V, Korram J, Satnami ML, Kumar M, Keshavkant S (2018) Silver nanoparticle modulates gene expressions, glyoxalase system and oxidative stress markers in fluoride stressed Cajanus cajan L. J Hazard Mater 353:44–52

    Article  CAS  Google Scholar 

  43. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxid Med Cell Longev 2017:9237263. https://doi.org/10.1155/2017/9237263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang F, Fan Y, Zhang D, Chen S, Bai X, Ma X, Xie Z, Xu H (2020) Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. Environ Pollut 263. https://doi.org/10.1016/j.envpol.2020.114475

  45. Liu H, Xu H, Huang K (2017) Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 9:21–37

    Article  CAS  Google Scholar 

  46. Tsutsui H, Ide T, Shiomi T, Kang D, Hayashidani S, Suematsu N, Wen J, Utsumi H, Hamasaki N, Takeshita A (2001) 8-oxo-dGTPase, which prevents oxidative stress-induced DNA damage, increases in the mitochondria from failing hearts. Circulation 104(24):2883–2885

    Article  CAS  Google Scholar 

  47. Ren S, Liu J, Feng Y, Li Z, He L, Li L, Cao X, Wang Z, Zhang Y (2019) Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. J Exp Clin Cancer Res 38(1). https://doi.org/10.1186/s13046-019-1398-2

  48. Wu J, Zhao Y, Park Y, Lee J, Gao L, Zhao J, Wang L (2018) Loss of PDK4 switches the hepatic NF-κB/TNF pathway from pro-survival to pro-apoptosis. Hepatology 68(3):1111–1124

    Article  CAS  Google Scholar 

  49. Taggart K, Estrada A, Thompson P, Lourenco F, Kirmani S, Suzuki-Hatano S, Pacak Christina A (2017) PDK4 deficiency induces intrinsic apoptosis in response to starvation in fibroblasts from Doberman pinschers with dilated cardiomyopathy. Biores Open Access 6(1):182–191

    Article  CAS  Google Scholar 

  50. Tang S, Xie J, Wu W, Yi B, Liu L, Zhang H (2020) High ammonia exposure regulates lipid metabolism in the pig skeletal muscle via mTOR pathway. Sci Total Environ 740:139917. https://doi.org/10.1016/j.scitotenv.2020.139917

    Article  CAS  PubMed  Google Scholar 

  51. Guo J, Xing H, Chen M, Wang W, Zhang H, Xu S (2019) H2S inhalation-induced energy metabolism disturbance is involved in LPS mediated hepatocyte apoptosis through mitochondrial pathway. Sci Total Environ 663:380–386

    Article  CAS  Google Scholar 

  52. Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M (2020) Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: involvement of blood-brain barrier, oxidative stress and apoptosis. Sci Total Environ 17:143054. https://doi.org/10.1016/j.scitotenv.2020.143054

    Article  CAS  Google Scholar 

  53. Yuan Y, Wang Y, Liu X, Luo B, Zhang L, Zheng F, Li X, Guo L, Wang L, Jiang M, Pan Y, Yan Y, Yang J, Chen S, Wang J, Tang J (2019) KPC1 alleviates hypoxia/reoxygenation-induced apoptosis in rat cardiomyocyte cells though BAX degradation. J Cell Physiol 234(12):22921–22934. https://doi.org/10.1002/jcp.28854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM, Strasser A (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419:634–637

    Article  CAS  Google Scholar 

  55. Shah SWA, Chen J, Han Q, Xu Y, Ishfaq M, Teng X (2020) Ammonia inhalation impaired immune function and mitochondrial integrity in the broiler bursa of fabricius: implication of oxidative stress and apoptosis. Ecotoxicol Environ Saf 190:110078. https://doi.org/10.1016/j.ecoenv.2019.110078

    Article  CAS  PubMed  Google Scholar 

  56. Wang S, Song P, Zou M (2012) AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122(12):555–573. https://doi.org/10.1042/CS20110625

    Article  CAS  Google Scholar 

  57. Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K, Fan Y (2013) The involvement of Nrf2ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res 35:71–78

    Article  CAS  Google Scholar 

  58. Cabezas-Sanchez P, Rainieri S, Conlledo N, Barranco A, Sanz-Landaluze J, Camara C, Luque-Garcia JL (2019) Impact of selenium co-administration on methylmercury exposed eleutheroembryos and adult zebrafish (Danio rerio): changes in bioaccumulation and gene expression. Chemosphere 236:124295. https://doi.org/10.1016/j.chemosphere.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  59. Marettová E, Maretta M, Legáth J (2015) Toxic effects of cadmium on testis of birds and mammals: a review. Anim. Reprod. Sci. 155(undefined):1–10

    Article  Google Scholar 

  60. Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J (2018) The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: expression of Hsps and inflammation-related genes and modulation of elements homeostasis. Ecotoxicol Environ Saf 159:205–212

    Article  CAS  Google Scholar 

  61. Kim N-H, Kang PM (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305

    Article  CAS  Google Scholar 

  62. Lee HY, Naha N, Kim JH, Jo MJ, Min KS, Seong HH, Shin DH, Kim MO (2008) Age- and area-dependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain. J Microbiol Biotechnol 18:1590–1598

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Earmarked Fund for China Agriculture Research System (Project No. CARS-35) and the Natural Science Foundation of Heilongjiang Province (LC2018009). Earmarked Fund for China Agriculture Research System,CARS-35,Houjuan Xing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjuan Xing.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, A., Wang, X. et al. Evaluation of L-Selenomethionine on Ameliorating Cardiac Injury Induced by Environmental Ammonia. Biol Trace Elem Res 200, 4712–4725 (2022). https://doi.org/10.1007/s12011-021-03071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03071-9

Keywords

Navigation