Skip to main content

Advertisement

Log in

Assessment of Serum Elements Concentration and Polycystic Ovary Syndrome (PCOS): Systematic Review and Meta-analysis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Change in the levels of trace elements has been linked with PCOS pathogenesis by various studies, whereas some had reported no such association. Therefore, in order to evaluate association of eleven trace element (Cu, Zn, Cr, Cd, Se, Mn, Fe, Mg, Co, Ni and Pb) serum concentration with PCOS pathogenesis, current systematic review and meta-analysis has been carried out. Literature search was conducted using PubMed, Central Cochrane Library, Google Scholar and Science Direct databases with appropriate keywords. Studies published upto 3rd of September were evaluated for eligibility with suitable inclusion and exclusion criteria. Only case–control studies examining the association of serum trace element concentrations between PCOS cases and controls were selected. Present meta-analysis identified 32 articles with 2317 PCOS and 1898 controls. The serum Cu (MD = 15.40; 95% CI = 4.32 to 26.48; p = 0.006), Co (MD = 0.01; 95% CI = 0.01 to 0.02; p = 0.000), Cr (MD = 0.04; 95% CI = 0.00 to 0.07; p = 0.03) and Fe (MD = 12.98; 95% CI = 5.87–20.09; p = 0.0003) concentration is significantly higher, while lower concentration has been observed for Se (MD =  − 0.99; 95% CI =  − 1.31 to − 0.67; p = 0.000) and Mg (MD =  − 223.41; 95% CI =  − 391.60 to − 55.23; p = 0.009) among women with PCOS in comparison with the healthy group. Concentration of other elements which were analysed is not significantly related to PCOS. In short, PCOS women has higher serum concentrations of Cu, Co, Cr and Fe and lower concentrations of Se and Mg. Studies with sub-population of obese, non-obese and with and without insulin resistance are important to understand the pathomechanism of these elements in the syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The data is available in the supplementary table.

References

  1. Witchel SF, Oberfield SE, Peña AS (2019) Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endo Society 3:1545–1573. https://doi.org/10.1210/js.2019-00078

    Article  CAS  Google Scholar 

  2. Wolf WM, Wattick RA, Kinkade ON, Olfert MD (2018) Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity. Int J Environ Res Public Health 15:2589–2602. https://doi.org/10.3390/ijerph15112589

    Article  PubMed Central  Google Scholar 

  3. Barber TM, Hanson P, Weickert MO, Franks S (2019) Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health 13:1179558119874042. https://doi.org/10.1177/1179558119874042

    Article  PubMed  PubMed Central  Google Scholar 

  4. Forslund M, Landin-Wilhelmsen K, Trimpou P, Schmidt J, Brännström M, Dahlgren E (2020) Type 2 diabetes mellitus in women with polycystic ovary syndrome during a 24-year period: importance of obesity and abdominal fat distribution. Hum Reprod Open hoz042. https://doi.org/10.1093/hropen/hoz042.

  5. Glintborg D, Rubin KH, Nybo M, Abrahamsen B, Andersen M (2018) Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovasc Diabetol 17:37–49. https://doi.org/10.1186/s12933-018-0680-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding DC, Chen W, Wang JH, Lin SZ (2018) Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine 97:e12608. https://doi.org/10.1097/MD.0000000000012608

    Article  PubMed  PubMed Central  Google Scholar 

  7. Melo AS, Ferriani RA, Navarro PA (2015) Treatment of infertility in women with polycystic ovary syndrome: approach to clinical practice. Clinics 70:765–769. https://doi.org/10.6061/clinics/2015(11)09

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma P, Bilkhiwal N, Chaturvedi P, Kumar S, Khetarpal P (2021) Potential environmental toxicant exposure, metabolizing gene variants and risk of PCOS-a systematic review. Reprod Toxicol 103:124–132. https://doi.org/10.1016/j.reprotox.2021.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Tang Y, Lin C, Huang Q, Lei D, Hu Y (2017) Serum macroelement and microelement concentrations in patients with polycystic ovary syndrome: a cross-sectional study. Biol Trace Elem Res 176:73–80. https://doi.org/10.1007/s12011-016-0782-4

    Article  CAS  PubMed  Google Scholar 

  10. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157

    PubMed  PubMed Central  Google Scholar 

  11. Tóth RJ, Csapó J (2018) The role of selenium in nutrition–a review. Acta Univ Sapientiae Aliment 11:128–144. https://doi.org/10.2478/ausal-2018-0008

    Article  Google Scholar 

  12. Rzymski P, Tomczyk K, Poniedzialek B, Opala T, Wilczak M (2015) Impact of heavy metals on the female reproductive system. Ann Agric Environ Med 22:259–264. https://doi.org/10.5604/12321966.1152077

    Article  CAS  PubMed  Google Scholar 

  13. Kant R, Verma V, Patel S, Chandra R, Chaudhary R, Shuldiner AR, Munir KM (2021) Effect of serum zinc and copper levels on insulin secretion, insulin resistance and pancreatic β cell dysfunction in US adults: findings from the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Diabetes Res Clin Pract 172. https://doi.org/10.1016/j.diabres.2020.108627.

  14. Kostov K (2019) Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes : focusing on the processes of insulin secretion and signaling. Int J Mol Sci 20:1351–1365. https://doi.org/10.3390/ijms20061351

    Article  CAS  PubMed Central  Google Scholar 

  15. Ceko MJ, Leary OS, Harris HH, Hummitzsch K, Rodgers RJ (2016) Trace elements in ovaries: measurement and physiology. Biol Reprod 94:1–14. https://doi.org/10.1095/biolreprod.115.137240

    Article  CAS  Google Scholar 

  16. Sengupta P, Banerjee R, Nath S, Das S, Banerjee S (2015) Metals and female reproductive toxicity. Hum Exp Toxicol 34:679–697. https://doi.org/10.1177/0960327114559611

    Article  CAS  PubMed  Google Scholar 

  17. Spritzer PM, Lecke SB, Fabris VC, Ziegelmann PK, Amaral L (2017) Blood trace element concentrations in polycystic ovary syndrome: systematic review and meta-analysis. Biol Trace Elem Res 175:254–262. https://doi.org/10.1007/s12011-016-0774-4

    Article  CAS  PubMed  Google Scholar 

  18. Yin J, Hong X, Ma J, Bu Y, Liu R (2020) Serum trace elements in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol 11:572384. https://doi.org/10.3389/fendo.2020.572384

    Article  Google Scholar 

  19. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 135:1–13. https://doi.org/10.1186/1471-2288-14-135

    Article  Google Scholar 

  20. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 13:1–10. https://doi.org/10.1186/1471-2288-5-13

    Article  Google Scholar 

  21. Celik C, Bastu E, Abali R, Alpsoy S, Guzel EC, Aydemir B, Yeh J (2013) The relationship between copper, homocysteine and early vascular disease in lean women with polycystic ovary syndrome. Gynecol Endocrinol 29:488–491. https://doi.org/10.3109/09513590.2013.774361

    Article  CAS  PubMed  Google Scholar 

  22. Kurdoglu Z, Kurdoglu M, Demir H, Sahin HB (2014) Serum trace elements and heavy metals in polycystic ovary syndrome. Hum Exp Toxicol 31:452–456. https://doi.org/10.1177/0960327111424299

    Article  CAS  Google Scholar 

  23. Taher MA, Mhaibes SH (2017) Assessment of some trace elements in obese and non-obese polycystic ovary syndrome (PCOS). Int J Sci Res 6:1333–1341. https://doi.org/10.21275/ART20176750

    Article  Google Scholar 

  24. Zheng G, Wang L, Guo Z, Sun L, Wang L, Wang C, Zuo Z, Qiu H (2015) Association of serum heavy metals and trace element concentrations with reproductive hormone levels and polycystic ovary syndrome in a Chinese population. Biol Trace Elem Res 167:1–10. https://doi.org/10.1007/s12011-015-0294-7

    Article  CAS  PubMed  Google Scholar 

  25. Özer A, Bakacak M, Kıran H, Ercan Ö, Köstü B, Kanat-Pektaş, et al (2016) Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. Ginekol Pol 87:733–738. https://doi.org/10.5603/GP.2016.0079

    Article  PubMed  Google Scholar 

  26. Asaad Mahdi M (2018) Evaluation of zinc, copper, chromium and thyroid hormones levels in serum of Iraqi women with polycystic ovarian syndrome. Diyala J Pure Sci 14:153–165. https://doi.org/10.24237/djps.1401.366a

    Article  CAS  Google Scholar 

  27. Revathi R, Julius A, Singaravelu S (2018) Correlation of serum coper, zinc, magnesium with insulin resistance in PCOS female of reproductive age group. Int J Pharm Res 10:789–792. https://doi.org/10.5958/0976-5506.2019.01225.7

    Article  Google Scholar 

  28. Kanafchian M, Esmaeilzadeh S, Mahjoub S, Rahsepar M, Ghasemi M (2020) Status of serum copper, magnesium, and total antioxidant capacity in patients with polycystic ovary syndrome. Biol Trace Elem Res 193:111–117. https://doi.org/10.1007/s12011-019-01705-7

    Article  CAS  PubMed  Google Scholar 

  29. Mohmmed AH, Awad NA, AL-Fartosy AJ (2019) Study of trace elements selenium, copper, zinc and manganese level in polycystic ovary syndrome (PCOS). Int J Res Appl Sci Biotechnol 6. https://doi.org/10.31033/ijrasb.6.6.

  30. Nanda S, Rani V, Kharb S (2020) Serum levels of zinc, copper and magnesium in polycystic ovarian syndrome : a cross sectional study. Int J Clin Obstet 4:88–91. https://doi.org/10.33545/gynae.2020.v4.i1b.446

    Article  Google Scholar 

  31. Bayraktar M, Gürbüz AS, Öztürk B (2021) The role of irisin, copper and zinc levels on insulin resistance in polycystic ovary syndrome. Arch Med Res 1:12–19. https://doi.org/10.47482/acmr.2020.2

    Article  Google Scholar 

  32. Kirmizi DA, Baser E, Turksoy VA, Kara M, Yalvac ES, Gocmen AY (2020) Are heavy metal exposure and trace element levels related to metabolic and endocrine problems in polycystic ovary syndrome? Biol Trace Elem Res 198:77–86. https://doi.org/10.1007/s12011-020-02220-w

    Article  CAS  PubMed  Google Scholar 

  33. Guler I, Himmetoglu O, Turp A, Erdem A, Erdem M, Onan MA, Taskiran C, Taslipinar MY, Guner H (2014) Zinc and homocysteine levels in polycystic ovarian syndrome patients with insulin resistance. Biol Trace Elem Res 158:297–304. https://doi.org/10.1007/s12011-014-9941-7

    Article  CAS  PubMed  Google Scholar 

  34. Kulhan M, Kulhan NG, Nayki UA, Nayki C, Ata N, Ulug P, Mertoglu C (2017) Assessment of the relationship between serum vitamin (A, B 12, C, D, folate) and zinc levels and polycystic ovary syndrome. Arch Med Sci - Civiliz Dis 2:62–69. https://doi.org/10.5114/amscd.2017.66840

    Article  Google Scholar 

  35. Farhood IG (2017) Assessment of serum zinc level in patients with polycystic ovary syndrome. Iraqi J Med Sci 15:39–47. https://doi.org/10.22578/ijms.15.1.6

    Article  Google Scholar 

  36. Kanafchian M, Mahjoub S, Esmaeilzadeh S, Rahsepar M, Mosapour A (2018) Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance. Middle East Fertil Soc J 23:241–245. https://doi.org/10.1016/j.mefs.2017.11.003

    Article  Google Scholar 

  37. Balahoroğlu R, Atmaca M, Sekeroğlu MR, Huyut Z (2020) The relationship between insulin resistance and trace elements in patients with polycystic ovary syndrome. OTJHS. 5:375–382. https://doi.org/10.26453/otjhs.571510

    Article  Google Scholar 

  38. Al-Jeborry M (2017) Some altered trace elements in patients with polycystic ovary syndrome. Br J Med Med Res 20:1–10. https://doi.org/10.9734/bjmmr/2017/31503

    Article  Google Scholar 

  39. Mhaibes SH, Taher MA, Badr AH (2017) A comparative study of blood levels of manganese, some macroelements and heavy metals in obese and non-obese polycystic ovary syndrome patients. Iraqi J Pharm Sci 26:85–94

    Google Scholar 

  40. Coskun A, Arikan T, Kilinc M, Arikan DC, Ekerbiçer HÇ (2013) Plasma selenium levels in Turkish women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 168:183–186. https://doi.org/10.1016/j.ejogrb.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  41. Zagrodzki P, Krzyczkowska-Sendrakowska M, Nicol F, Wietecha-Posłuszny R, Milewicz T, Kryczyk-Kozioł et al (2017) Selenium status parameters in patients with polycystic ovary syndrome. J Trace Elem Biol 44:241–246. https://doi.org/10.1016/j.jtemb.2017.08.012

    Article  CAS  Google Scholar 

  42. Gözdemir E, Kaygusuz I, Kafali H (2013) Is hepcidin a new cardiovascular risk marker in polycystic ovary syndrome? Gynecol Obstet Invest 75:196–202. https://doi.org/10.1159/000348497

    Article  CAS  PubMed  Google Scholar 

  43. Al-Hakeim HK (2012) Correlation between iron status parameters and hormone levels in women with polycystic ovary syndrome. Clin Med Insights Women’s Heal 5:1–8. https://doi.org/10.4137/cmwh.s8780

    Article  CAS  Google Scholar 

  44. Palomba S, Falbo A, Chiossi G, Orio F, Tolino A, Colao A, La S, Zullo F (2014) Low-grade chronic inflammation in pregnant women with polycystic ovary syndrome: a prospective controlled clinical study. J Clin Endocrinol Metab 99:2942–2951. https://doi.org/10.1210/jc.2014-1214

    Article  CAS  PubMed  Google Scholar 

  45. Kim JW, Kang KM, Yoon TK, Shim SH, Lee WS (2014) Study of circulating hepcidin in association with iron excess, metabolic syndrome, and BMP-6 expression in granulosa cells in women with polycystic ovary syndrome. Fertil Steril 102:548–554. https://doi.org/10.1016/j.fertnstert.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  46. Rashidi BH, Shariat SSM, Jaliseh HK (2017) Evaluation of serum hepcidin and iron levels in patients with PCOS : a case-control study. J Endocrinol Invest 40:779–784. https://doi.org/10.1007/s40618-017-0632-z

    Article  CAS  Google Scholar 

  47. Khashchenko E, Uvarova E, Vysokikh M, Ivanets T, Krechetova L, Tarasova N, Sukhanova I, Mamedova F, Borovikov P, Balashov I, Sukhikh G (2020) The relevant hormonal levels and diagnostic features of polycystic ovary syndrome in adolescents. J Clin Med 9:1831–1844. https://doi.org/10.3390/jcm9061831

    Article  CAS  PubMed Central  Google Scholar 

  48. Muneyyirci-Delale O, Nacharaju VL, Dalloul M, Jalou S, Rahman M, Altura BM, Altura BT (2001) Divalent cations in women with PCOS : implications for cardiovascular disease. Gynecol Endocrinol 15:198–201. https://doi.org/10.1080/gye.15.3.198.201

    Article  CAS  PubMed  Google Scholar 

  49. Shaba’a SM (2009) Is lipid profile in women with polycystic ovary syndrome related to calcium or magnesium in serum? J Kerbala Univ 7:150–157

    Google Scholar 

  50. Kauffman RP, Tullar PE, Nipp RD, Castracane VD (2011) Serum magnesium concentrations and metabolic variables in polycystic ovary syndrome. Acta Obstetric Gynecol Scand 90:452–458. https://doi.org/10.1111/j.1600-0412.2010.01067

    Article  CAS  Google Scholar 

  51. Sharifi F, Mazloomi S, Hajihosseini R, Mazloomzadeh S (2012) Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecol Endocrinol 28:7–11. https://doi.org/10.3109/09513590.2011.579663

    Article  CAS  PubMed  Google Scholar 

  52. Rajeswari G, Veerabhadrudu B, Suresh E (2016) Study of magnesium levels in polycystic ovarian syndrome. Int J Adv Sci Res 2:054–058. https://doi.org/10.7439/ijasr.v2i2.2870

    Article  Google Scholar 

  53. Babapour M, Mohammadi H, Kazemi M, Hadi A, Rezazadegan M, Askari G (2021) Associations between serum magnesium concentrations and polycystic ovary syndrome status: a systematic review and meta-analysis. Biol Trace Elem Res 199:1297–1305. https://doi.org/10.1007/s12011-020-02275-9

    Article  CAS  PubMed  Google Scholar 

  54. Abedini M, Ghaedi E, Hadi A, Mohammadi H, Amani R (2019) Zinc status and polycystic ovarian syndrome: a systematic review and meta-analysis. J Trace Elem Med Biol 52:216–221. https://doi.org/10.1016/j.jtemb.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  55. Chen J, Jiang Y, Shi H et al (2020) The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch Eur J Physiol 472:1415–1429. https://doi.org/10.1007/s00424-020-02412-2

    Article  CAS  Google Scholar 

  56. Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583. https://doi.org/10.1016/j.pharmthera.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  57. Michalczyk K, Cymbaluk-Płoska A (2020) The role of zinc and copper in gynecological malignancies. Nutrients 12:3732. https://doi.org/10.3390/nu12123732

    Article  CAS  PubMed Central  Google Scholar 

  58. Zuo T, Zhu M, Xu W (2016) Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev 8589318. https://doi.org/10.1155/2016/8589318.

  59. Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A (2016) Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res 65:11–22. https://doi.org/10.33549/physiolres.933063

    Article  CAS  PubMed  Google Scholar 

  60. Michaluk A, Kochman K (2007) Involvement of copper in female reproduction. Reprod Biol 7:193–205

    PubMed  Google Scholar 

  61. Peacey L, Elphick MR, Jones CE (2020) Roles of copper in neurokinin B and gonadotropin-releasing hormone structure and function and the endocrinology of reproduction. Gen Comp Endocrinol 113342. https://doi.org/10.1016/j.ygcen.2019.113342

  62. Sun Y, Wang W, Guo Y, Zheng B, Li H, Chen J, Zhang W (2019) High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: population-based and in vitro studies. Toxicol Appl Pharmacol 365:101–111. https://doi.org/10.1016/j.taap.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  63. Vincent JB (2017) New evidence against chromium as an essential trace element. J Nutr 147:2212–2219. https://doi.org/10.3945/jn.117.255901

    Article  CAS  PubMed  Google Scholar 

  64. Xu J, Zhao M, Pei L, Zhang R, Liu X, Wei L et al (2018) Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: a cross-sectional study. BMJ Open 8:e021470. https://doi.org/10.1136/bmjopen-2017-021470

    Article  PubMed  PubMed Central  Google Scholar 

  65. Remy LL, Byers V, Clay T (2017) Reproductive outcomes after non-occupational exposure to hexavalent chromium, Willits California, 1983–2014. Environ Health 18:1–15. https://doi.org/10.1186/s12940-017-0222-8

    Article  Google Scholar 

  66. Fazelian S, Rouhani MH, Bank SS, Amani R (2017) Chromium supplementation and polycystic ovary syndrome: a systematic review and meta-analysis. J Trace Elem Med Biol 42:92–96. https://doi.org/10.1016/j.jtemb.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  67. Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319. https://doi.org/10.1016/j.jnutbio.2011.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siddiqui K, Bawazeer N, Joy SS (2014) Variation in macro and trace elements in progression of type 2 diabetes. Sci World J 461591. https://doi.org/10.1155/2014/461591

  69. Desmarais TL, Costa M (2019) Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1–7. https://doi.org/10.1016/j.cotox.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kirkland D, Brock T, Haddouk H, Hargeaves V, Lloyd M, Sewald K, Mc S, Proudlock R, Sire G, Sokolowski A, Ziemann C (2015) New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk. Regul Toxicol Pharmacol 73:311–338. https://doi.org/10.1016/j.yrtph.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  71. Safonov VA (2018) Biological role of selenium and correction effects of its content in the organism of animals. Geochem Int 1046–1050. https://doi.org/10.1134/S0016702918100105

  72. Zhang X, Li X, Zhang W, Song Y (2018) Selenium and cardiovascular disease: epidemiological evidence of a possible u-shaped relationship. In: Michalke B, editor. Selenium Cham: Springer International Publishing 303–316. https://doi.org/10.1007/978-3-319-95390-8_16

  73. Köse SA, Nazıroğlu M (2014) Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol Trace Element Res 158:136–142. https://doi.org/10.1007/s12011-014-9929-3

    Article  CAS  Google Scholar 

  74. Wang Y, Lin M, Gao X, Pedram P, Du J, Vikram C, Gulliver W, Zhang H, Sun G (2017) High dietary selenium intake is associated with less insulin resistance in the Newfoundland population. PLoS ONE 12:1–15. https://doi.org/10.1371/journal.pone.0174149

    Article  CAS  Google Scholar 

  75. Safiyeh FD, Dizaji F, Mojgan M, Parviz S, Alizadeh M, Oskouei S (2021) The effect of selenium and vitamin E supplementation on anti-Mullerian hormone and antral follicle count in infertile women with occult premature ovarian insufficiency : a randomized controlled clinical trial. Complement Ther Med 56:102533. https://doi.org/10.1016/j.ctim.2020.102533

    Article  PubMed  Google Scholar 

  76. Razavi M, Jamilian M, Kashan ZF, Heidar Z, Mohseni Z, Ghandi Y, Bagherian T, Asemi Z (2016) Selenium supplementation and the effects on reproductive outcomes, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome. Horm Metab Res 48:185–190. https://doi.org/10.1055/s-0035-1559604

    Article  CAS  PubMed  Google Scholar 

  77. Escobar-morreale F (2012) Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol Metab 23:509–515. https://doi.org/10.1016/j.tem.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  78. Saito H (2014) Metabolism of iron stores. Nagoya J Med Sci 76:235

    PubMed  PubMed Central  Google Scholar 

  79. Simcox JA, McClain DA (2014) Iron and diabetes risk. Cell Metab 17:329–341. https://doi.org/10.1016/j.cmet.2013.02.007

    Article  CAS  Google Scholar 

  80. Britton L, Bridle K, Reiling J, Santrampurwala N, Wockner L, Ching H, Stuart K, Subramaniam VN, Trengove R, Olynyk J, House M, Gummer J (2018) Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease. Hepatol Commun 2:644–653. https://doi.org/10.1002/hep4.1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tiongco RE, Rivera N, Clemente B, Dizon D, Salita C, Pineda-cortel MR, Enrique R, Rivera N, Clemente B, Dizon D (2019) Serum ferritin as a candidate diagnostic biomarker of polycystic ovarian syndrome : a meta-analysis. Biomarkers 24:484–491. https://doi.org/10.1080/1354750X.2019.1620335

    Article  CAS  PubMed  Google Scholar 

  82. Schwalfenberg GK, Genuis SJ (2017) The importance of magnesium in clinical healthcare. Scientifica 4179326. https://doi.org/10.1155/2017/4179326

  83. Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA (2016) Review article magnesium deficiency and oxidative stress : an update. Biomedicine 6:8–14. https://doi.org/10.7603/s40681-016-0020-6

    Article  Google Scholar 

  84. Shahi A, Aslani S, Ataollahi M, Mahmoudi M (2019) The role of magnesium in different inflammatory diseases. Inflammopharmacology 27:649–661. https://doi.org/10.1007/s10787-019-00603-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this work by ICMR New Delhi [54/08/2019/HUM-BMS, Project id 2019-1384]. DST-FIST support (SR/FST/LS-I/2017/49-C) to the Department of Human Genetics & Molecular Medicine is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Priya Sharma: Conceptualization, methodology, formal analysis, data curation and writing—original draft.

Vartika Gupta: Methodology, data curation and formal analysis.

Kush Kumar: Methodology, data curation and formal analysis.

Preeti Khetarpal: Conceptualization, validation, supervision, writing (review and editing) and funding acquisition.

Corresponding author

Correspondence to Preeti Khetarpal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12011_2021_3058_MOESM1_ESM.pdf

Supplementary file1 a) The funnel plot for the association between serum Cu concentration and PCOS; b) The sensitivity analysis test for association between Cu concentration and PCOS risk. (PDF 242 KB)

12011_2021_3058_MOESM2_ESM.pdf

Supplementary file2 a) The funnel plot for the association between serum Zn concentration and PCOS; b) The sensitivity analysis test for association between Zn concentration and PCOS risk. (PDF 275 KB)

12011_2021_3058_MOESM3_ESM.pdf

Supplementary file3 The sensitivity analysis by excluding largest size effect study. (a-g) representing the sensitivity analysis test for association between PCOS risk and the serum trace elements concentration of Cd, Se, Mn, Fe, and Pb respectively. (PDF 592 KB)

12011_2021_3058_MOESM4_ESM.pdf

Supplementary file4 a) The funnel plot for the association between serum Mg concentration and PCOS; b) The sensitivity analysis test for association between Mg concentration and PCOS risk. (PDF 264 KB)

12011_2021_3058_MOESM5_ESM.docx

Supplementary file5 The Newcastle-Ottawa Scale (NOS) used for the quality assessment of the thirty-two relevant studies included in the metanalysis. (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, V., Kumar, K. et al. Assessment of Serum Elements Concentration and Polycystic Ovary Syndrome (PCOS): Systematic Review and Meta-analysis. Biol Trace Elem Res 200, 4582–4593 (2022). https://doi.org/10.1007/s12011-021-03058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03058-6

Keywords

Profiles

  1. Preeti Khetarpal