Skip to main content

Advertisement

Log in

Low Levels of Serum Zinc Associate with Malnutrition Risk Assessed by the Royal Free Hospital-Nutritional Prioritizing Tool in Cirrhosis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We have clarified that malnutrition risk evaluated by the Royal Free Hospital-Nutritional Prioritizing Tool (RFH-NPT) is prevalent in patients with cirrhosis. Mineral elements (zinc, iron, magnesium, copper, manganese, and calcium) are micronutrients essential for versatile physiological processes and cellular bioactivities. However, the association between these trace elements and integral nutritional status is unclear in decompensated cirrhotics. We collected blood samples from hospitalized patients with cirrhosis, and serum trace element concentrations were examined by inductively coupled plasma mass spectrometry. Association of trace element levels with high malnutrition risk was determined by multivariate logistic regression model. Sera from 141 patients with decompensated cirrhosis were analyzed for a total of six trace element concentrations. No significant differences were observed between high and low/moderate RFH-NPT malnutrition risk groups with the exception of zinc. The serum zinc concentrations were significantly decreased in patients at high malnutrition risk when compared to low/moderate subjects (57.9 vs 68.1 μg/dL, P = 0.006). In terms of receiver operating characteristics curve, zinc < 64 μg/dL represented best discriminative capability with an area of 0.635 (95% CI: 0.542, 0.728). Patients in the group with zinc < 64 μg/dL had elevated RFH-NPT and MELD score, higher proportion of Child–Pugh class C and ascites, higher CRP, lower albumin and sodium than in the group with zinc ≥ 64 μg/dL. Zinc < 64 μg/dL was an independent risk factor for high malnutrition risk. Low levels of serum zinc referring to less than 64 μg/dL were associated with poor integral nutritional status in cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Himoto T, Masaki T (2020) Current trends of essential trace elements in patients with chronic liver diseases. Nutrients 12(7):2084

    Article  CAS  PubMed Central  Google Scholar 

  2. Katayama K (2020) Zinc and protein metabolism in chronic liver diseases. Nutr Res 74:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Savarino G, Corsello A, Corsello G (2021) Macronutrient balance and micronutrient amounts through growth and development. Ital J Pediatr 47(1):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilca-Blanariu GE, Diaconescu S, Ciocoiu M, Stefanescu G (2018) New insights into the role of trace elements in IBD. Biomed Res Int 2018:1813047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wolide AD, Zawdie B, Alemayehu T, Tadesse S (2017) Association of trace metal elements with lipid profiles in type 2 diabetes mellitus patients: a cross sectional study. BMC Endocr Disord 17(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nangliya V, Sharma A, Yadav D, Sunder S, Nijhawan S, Mishra S (2015) Study of trace elements in liver cirrhosis patients and their role in prognosis of disease. Biol Trace Elem Res 165(1):35–40

    Article  CAS  PubMed  Google Scholar 

  7. Dhanda A, Atkinson S, Vergis N, Enki D, Fisher A, Clough R et al (2020) Trace element deficiency is highly prevalent and associated with infection and mortality in patients with alcoholic hepatitis. Aliment Pharmacol Ther 52(3):537–544

    Article  CAS  PubMed  Google Scholar 

  8. Llibre-Nieto G, Lira A, Vergara M, Sole C, Casas M, Puig-Divi V et al (2021) Micronutrient deficiencies in patients with decompensated liver cirrhosis. Nutrients 13(4):1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Feng H, Hui Y, Yu Z, Zhao T, Mao L et al (2021) Neutrophil-to-lymphocyte ratio is associated with malnutrition risk estimated by the Royal Free Hospital-Nutritional Prioritizing Tool in hospitalized cirrhosis. JPEN J Parenter Enteral Nutr

  10. Carvalho L, Parise ER (2006) Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gastroenterol 43(4):269–274

    Article  PubMed  Google Scholar 

  11. Canamares-Orbis P, Bernal-Monterde V, Sierra-Gabarda O, Casas-Deza D, Garcia-Rayado G, Cortes L et al (2021) Impact of liver and pancreas diseases on nutritional status. Nutrients 13(5):1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bischoff SC, Bernal W, Dasarathy S, Merli M, Plank LD, Schutz T et al (2020) ESPEN practical guideline: clinical nutrition in liver disease. Clin Nutr 39(12):3533–3562

    Article  PubMed  Google Scholar 

  13. European Association for the Study of the Liver (2019) EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol 70(1):172–193

    Article  Google Scholar 

  14. Bunchorntavakul C, Reddy KR (2020) Review article: malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment Pharmacol Ther 51(1):64–77

    Article  PubMed  Google Scholar 

  15. Mendenhall C, Roselle GA, Gartside P, Moritz T (1995) Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res 19(3):635–641

    Article  CAS  PubMed  Google Scholar 

  16. Borhofen SM, Gerner C, Lehmann J, Fimmers R, Gortzen J, Hey B et al (2016) The Royal Free Hospital-Nutritional Prioritizing Tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Dig Dis Sci 61(6):1735–1743

    Article  CAS  PubMed  Google Scholar 

  17. Wu Y, Zhu Y, Feng Y, Wang R, Yao N, Zhang M et al (2020) Royal Free Hospital-Nutritional Prioritizing Tool improves the prediction of malnutrition risk outcomes in liver cirrhosis patients compared with Nutritional Risk Screening 2002. Br J Nutr 124(12):1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Georgiou A, Papatheodoridis GV, Alexopoulou A, Deutsch M, Vlachogiannakos I, Ioannidou P et al (2019) Evaluation of the effectiveness of eight screening tools in detecting risk of malnutrition in cirrhotic patients: the KIRRHOS study. Br J Nutr 122(12):1368–1376

    Article  CAS  PubMed  Google Scholar 

  19. Yokoyama K, Araki S, Sato H, Aono H (2000) Circadian rhythms of seven heavy metals in plasma, erythrocytes and urine in men: observation in metal workers. Ind Health 38(2):205–212

    Article  CAS  PubMed  Google Scholar 

  20. Dale JC, Burritt MF, Zinsmeister AR (2002) Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, and ferritin levels. Am J Clin Pathol 117(5):802–808

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal A, Avarebeel S, Choudhary NS, Goudar M, Tejaswini CJ (2017) Correlation of trace elements in patients of chronic liver disease with respect to Child- Turcotte- Pugh Scoring System. J Clin Diagn Res 11(9):25–28

    Google Scholar 

  22. Nishikawa H, Enomoto H, Yoh K, Iwata Y, Sakai Y, Kishino K et al (2019) Serum zinc level classification system: usefulness in patients with liver cirrhosis. J Clin Med 8(12):2057

    Article  CAS  PubMed Central  Google Scholar 

  23. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    Article  CAS  PubMed  Google Scholar 

  24. Ozeki I, Nakajima T, Suii H, Tatsumi R, Yamaguchi M, Arakawa T et al (2020) Evaluation of treatment with zinc acetate hydrate in patients with liver cirrhosis complicated by zinc deficiency. Hepatol Res 50(4):488–501

    Article  CAS  PubMed  Google Scholar 

  25. Elmes ME, Jones JG (1980) Ultrastructural changes in the small intestine of zinc deficient rats. J Pathol 130(1):37–43

    Article  CAS  PubMed  Google Scholar 

  26. Katayama K (2004) Ammonia metabolism and hepatic encephalopathy. Hepatol Res 30S:73–80

    Article  PubMed  CAS  Google Scholar 

  27. Holecek M (2015) Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition 31(1):14–20

    Article  CAS  PubMed  Google Scholar 

  28. Carey EJ, Lai JC, Wang CW, Dasarathy S, Lobach I, Montano-Loza AJ et al (2017) A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 23(5):625–633

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kodama H, Tanaka M, Naito Y, Katayama K, Moriyama M (2020) Japan’s practical guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis. Int J Mol Sci 21(8):2941

    Article  CAS  PubMed Central  Google Scholar 

  30. Nardelli S, Lattanzi B, Merli M, Farcomeni A, Gioia S, Ridola L et al (2019) Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. Hepatology 70(5):1704–1713

    Article  PubMed  Google Scholar 

  31. Hanai T, Shiraki M, Watanabe S, Kochi T, Imai K, Suetsugu A et al (2017) Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol Res 47(13):1359–1367

    Article  CAS  PubMed  Google Scholar 

  32. Kiilerich S, Christiansen C (1986) Distribution of serum zinc between albumin and alpha 2-macroglobulin in patients with different zinc metabolic disorders. Clin Chim Acta 154(1):1–6

    Article  CAS  PubMed  Google Scholar 

  33. Yanagisawa H (2008) Zinc deficiency and clinical practice–validity of zinc preparations. Yakugaku Zasshi 128(3):333–339

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez-Conde M, Llop E, Gomez-Pimpollo L, Fernandez Carrillo C, Rodriguez L, Van Den Brule E et al (2021) Adding branched-chain amino acids to an enhanced standard-of-care treatment improves muscle mass of cirrhotic patients with sarcopenia: a placebo-controlled trial. Am J Gastroenterol 116(11):2241–2249

    Article  PubMed  Google Scholar 

  35. Takuma Y, Nouso K, Makino Y, Hayashi M, Takahashi H (2010) Clinical trial: oral zinc in hepatic encephalopathy. Aliment Pharmacol Ther 32(9):1080–1090

    Article  CAS  PubMed  Google Scholar 

  36. El-Shazly AN, Ibrahim SA, El-Mashad GM, Sabry JH, Sherbini NS (2015) Effect of zinc supplementation on body mass index and serum levels of zinc and leptin in pediatric hemodialysis patients. Int J Nephrol Renovasc Dis 8:159–163

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pakfetrat M, Shahroodi JR, Zolgadr AA, Larie HA, Nikoo MH, Malekmakan L (2013) Effects of zinc supplement on plasma homocysteine level in end-stage renal disease patients: a double-blind randomized clinical trial. Biol Trace Elem Res 153(1–3):11–15

    Article  CAS  PubMed  Google Scholar 

  38. Grungreiff K, Reinhold D, Wedemeyer H (2016) The role of zinc in liver cirrhosis. Ann Hepatol 15(1):7–16

    Article  PubMed  CAS  Google Scholar 

  39. Albillos A, Lario M, Alvarez-Mon M (2014) Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 61(6):1385–1396

    Article  CAS  PubMed  Google Scholar 

  40. Deng Y, Fan X, Ran Y, Xu X, Lin L, Cui B et al (2019) Prognostic impact of neutrophil-to-lymphocyte ratio in cirrhosis: a propensity score matching analysis with a prespecified cut-point. Liver Int 39(11):2153–2163

    Article  CAS  PubMed  Google Scholar 

  41. Lin L, Yang F, Wang Y, Su S, Su Z, Jiang X et al (2018) Prognostic nomogram incorporating neutrophil-to-lymphocyte ratio for early mortality in decompensated liver cirrhosis. Int Immunopharmacol 56:58–64

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Zhou B (2010) Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 62(3):176–182

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly supported by the Science and Technology Program of Tianjin (Grant 19ZXDBSY00020) to K. Jiang.

Author information

Authors and Affiliations

Authors

Contributions

W.T. Yang, X.Y. Wang, Z.H. Yu, and C. Sun: conceptualization, data analysis, statistics, and drafting manuscript. C.Q. Li, M.Y. Sun, and Y.F. Li: data analysis contribution. Y.Y. Hui and H.J. Feng: performing laboratory tests. G.Y. Guo and X.F. Fan: data analysis contribution. K. Jiang: providing valid criticism. All the authors discussed the data and approved the final version of the manuscript.

Corresponding author

Correspondence to Chao Sun.

Ethics declarations

Ethics Approval

The present study was implemented following the Declaration of Helsinki and was approved by the Ethics Committee of TJMUGH.

Consent to Participate

All participants have provided written informed consent.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, X., Yu, Z. et al. Low Levels of Serum Zinc Associate with Malnutrition Risk Assessed by the Royal Free Hospital-Nutritional Prioritizing Tool in Cirrhosis. Biol Trace Elem Res 200, 4289–4296 (2022). https://doi.org/10.1007/s12011-021-03033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03033-1

Keywords

Navigation