Skip to main content
Log in

Protective Effect of Manganese on Apoptosis and Mitochondrial Function of Heat-Stressed Primary Chick Embryonic Myocardial Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2023

This article has been updated

Abstract

Heat stress, as a kind of oxidative stress, induces cell apoptosis. Apoptosis is a form of programmed cell death, and mitochondria play an important role in apoptosis. Manganese (Mn) has an antioxidant capacity by enhancing the activity of manganese superoxide dismutase (MnSOD). To investigate the potential effect of Mn on heat stress-induced apoptosis and mitochondrial function, we examined crucial related factors in the context of heat stress using primary chick embryonic myocardial cells pretreated with Mn for 24 h. The results showed that Mn restored the heat stress-induced decrease in cell viability and reduced the activities of caspase-3 (P < 0.05). The repression of the Δψm and intracellular ATP content caused by heat stress was reversed dramatically in the Mn pretreatment group (P < 0.05). Additionally, Mn inhibited heat stress-induced mitochondrial fission, as shown by decreased mitochondrial fission-related protein dynamin-related protein 1 (Drp1) expression and increased mitochondrial fusion-related protein optic atrophy 1 (Opa1) and mitofusin 1 (Mfn1) (P < 0.05) in primary chick embryonic myocardial cells. It was concluded that Mn attenuates the mitochondrial-mediated apoptosis pathway and sustains mitochondrial structure and function under heat stress in primary chick embryonic myocardial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Change history

References

  1. Lara L, Rostagno M (2013) Impact of heat stress on poultry production. Animals 3(2):356–369. https://doi.org/10.3390/ani3020356

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang CP, Hsu YC, Lin MT (2003) Magnolol protects against cerebral ischaemic injury of rat heatstroke. Clin Exp Pharmacol Physiol 30(5–6):387–392. https://doi.org/10.1046/j.1440-1681.2003.03847.x

    Article  CAS  PubMed  Google Scholar 

  3. Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V et al (2010) Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci 89(9):1905–1914. https://doi.org/10.3382/ps.2010-00812

    Article  CAS  PubMed  Google Scholar 

  4. Quinteiro-Filho WM, Gomes AV, Pinheiro ML et al (2012) Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella enteritidis. Avian Pathol 41(5):421–427. https://doi.org/10.1080/03079457.2012.709315

    Article  CAS  PubMed  Google Scholar 

  5. Kamel NN, Ahmed A, Mehaisen G et al (2017) Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. Int J Biometeorol 61(9):1637–1645. https://doi.org/10.1007/s00484-017-1342-0

    Article  PubMed  Google Scholar 

  6. Slimen IB, Najar T, Ghram A et al (2014) Reactive oxygen species, heart stress and oxidative-induced mitoehondrial damage. A review. Int J Hyperthermia 30(7):513–523. https://doi.org/10.3109/02656736.2014.971446

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Tan GY, Fu YQ et al (2010) Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp Biochem Physiol C Toxicol Pharmacol 151(2):204–208. https://doi.org/10.1016/j.cbpc.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  8. Zeng T, Li JJ, Wang DQ et al (2014) Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities. Cell Stress Chaperones 19(6):895–901. https://doi.org/10.1007/s12192-014-0514-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsuki S et al (2003) Suppression of cytochrome c release and apoptosis in testes with heat stress by minocycline. Biochem Biophys Res Commun 312:843–849. https://doi.org/10.1016/j.bbrc.2003.10.191

    Article  CAS  PubMed  Google Scholar 

  10. Buckley IK (1972) A light and electron microscopic study of thermally injured cultured cells. Lab Invest 26(2):201–209

    CAS  PubMed  Google Scholar 

  11. Sakaguchi Y, Stephens LC, Makino M, Kaneko T, Strebel FR et al (1995) Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res 55:5459–5464

    CAS  PubMed  Google Scholar 

  12. Bouchama A, Roberts G, Al MF, El-Sayed R, Lach B et al (1985) (2005) Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J Appl Physiol 98:697–705. https://doi.org/10.1152/japplphysiol.00461.2004

    Article  Google Scholar 

  13. Di Wu Xu, Jiao SE et al (2015) Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones 20(4):687–696. https://doi.org/10.1007/s12192-015-0596-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Islam A, Lv YJ, AbdeInasir A et al (2013) The role of Hsp90 alpha in heat-induced apoptosis and cell damage in; primary myocardial cell cultures of neonatal rats. Genet Mol Res 12(4):6080–6091. https://doi.org/10.4238/2013.december.2.6

    Article  CAS  PubMed  Google Scholar 

  15. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trinei M, Migliaccio E, Bernardi P, Paolucci F, Pelicci P, Giorgio M (2013) p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol 528:99–110. https://doi.org/10.1016/b978-0-12-405881-1.00006-9

    Article  CAS  PubMed  Google Scholar 

  17. Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, Yuan FF, Liu ZF, Tong HS, Su L (2014) Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep 4:4469. https://doi.org/10.1038/srep04469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879. https://doi.org/10.1038/nrm2275

    Article  CAS  PubMed  Google Scholar 

  19. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638

    Article  CAS  PubMed  Google Scholar 

  20. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. https://doi.org/10.1101/gad.1658508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jian F, Chen D, Chen L, Yan C, Lu B, Zhu Y et al (2018) Sam50 regulates PINK1-Parkin-mediated mitophagy by controlling PINK1 stability and mitochondrial morphology. Cell Rep 23(10):2989–3005. https://doi.org/10.1016/j.celrep.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  22. Hitchler M, Wikainapakul K, Yu L et al (2006) Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 1(4):163–171. https://doi.org/10.4161/epi.1.4.3401

    Article  PubMed  Google Scholar 

  23. Gu ZT, Li L, Wu F, Zhao P, Yang H et al (2015) Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep 5:11497. https://doi.org/10.1038/srep11497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Tan H, Gu Z et al (2014) Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS ONE 9(12):e111083. https://doi.org/10.1371/journal.pone.0111083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qin SZ, Liao XD, Lu L, Zhang LY, Xi L, Guo YL, Luo XG (2017) Manganese enhances the expression of the manganese superoxide dismutase in cultured primary chick embryonic myocardial cells. J Integr Agric 16(9):2038–2046. https://doi.org/10.1016/S2095-3119(16)61527-7

    Article  CAS  Google Scholar 

  26. Qin SZ, Wang R, Tang DF, Qin SJ, Guo YL, Shi ZG (2021) Manganese mitigates heat stress-induced apoptosis by alleviating endoplasmic reticulum stress and activating the NRF2/SOD2 pathway in primary chick embryonic myocardial cells. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02810-2

    Article  PubMed  Google Scholar 

  27. Vanmuylder N, Evrard L, Daelemans P, Van RJ, Dourov N (2000) Immunohisto chemical expression of heat shock proteins HSP27, HSP70, HSP90 and HSP110 in salivary gland tumors: a study of 50 cases. Ann Pathol 20(3):190–195

    CAS  PubMed  Google Scholar 

  28. Xiong YJ, Yin QR, Jin EH, Chen HT, He SJ (2020) Selenium attenuates chronic heat stress-induced apoptosis via the inhibition of endoplasmic reticulum stress in mouse granulosa cells. Molecules 25:557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roberts GT et al (2008) Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke a study in baboon model. Arterioscler Thromb Vasc Biol 28:1130–1136. https://doi.org/10.1161/atvbaha.107.158709

    Article  CAS  PubMed  Google Scholar 

  30. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39(4):1141–1149

    CAS  PubMed  Google Scholar 

  31. Hsu YL et al (2011) Heat shock induces apoptosis through reactive oxygen speciesinvolving mitochondrial and death receptor pathways in corneal cells. Exp Eye Res 93(4):405–412. https://doi.org/10.1016/j.exer.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  32. Milleron RS, Bratton SB (2006) Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J Biol Chem 281(25):16991–17000. https://doi.org/10.1074/jbc.m512754200

    Article  CAS  PubMed  Google Scholar 

  33. Fan X, Hussien R, Brooks GA (2010) H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radic Biol Med 49(11):1646–1654. https://doi.org/10.1016/j.freeradbiomed.2010.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fissionfusion proteins. FEBS J 278(6):941–954. https://doi.org/10.1111/j.1742-4658.2011.08010.x

    Article  CAS  PubMed  Google Scholar 

  35. Nagdas S, Kashatus DF (2017) The interplay between oncogenic signaling networks and mitochondrial dynamics. Antioxidants 6(2):33. https://doi.org/10.3390/antiox6020033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang W, Wang R, Zhang Q, Mor G, Zhang H (2018) Benzo(a)pyren-7,8- dihydrodiol -9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion. Environ Pollut 233:820–832. https://doi.org/10.1016/j.envpol.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  37. Jafri MS, Dudycha SJ, O’Rourke B (2001) Cardiac energy metabolism: models of cellular respiration. Annu Rev Biomed Eng 3:57–81. https://doi.org/10.1146/annurev.bioeng.3.1.57

    Article  CAS  PubMed  Google Scholar 

  38. Burman JL, Itsara LS, Kayser EB, Suthammarak W, Wang AM et al (2014) A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech 7(10):1165–1174. https://doi.org/10.1242/dmm.015321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Callista Y, Wen Y, Siegfried H (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157(4):897–909. https://doi.org/10.1016/j.cell.2014.02.055

    Article  CAS  Google Scholar 

  40. Wang HL, Xing GD, Qian Y, Sun XF, Zhong JF, Chen KL (2021) Dihydromyricetin attenuates heat stress-induced apoptosis in dairy cow mammary epithelial cells through suppressing mitochondrial dysfunction. Ecotoxicol Environ Saf 214:112078. https://doi.org/10.1016/j.ecoenv.2021.112078

    Article  CAS  PubMed  Google Scholar 

  41. Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40(7):1131–1143. https://doi.org/10.1016/j.freeradbiomed.2005.10.064

    Article  CAS  PubMed  Google Scholar 

  42. Qi D, Yong LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26(8):422–429. https://doi.org/10.1016/j.tem.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Velagapudi R, El-bakoush A, Lepiarz I et al (2017) AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 435(1–2):149–162. https://doi.org/10.1007/s11010-017-3064-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bröer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J et al (2011) Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. J Biol Chem 286(30):26638–26651. https://doi.org/10.1074/jbc.m111.241323

    Article  PubMed  PubMed Central  Google Scholar 

  45. Choi J, Chandrasekaran K, Inoue T et al (2014) PGC-1α regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiol Dis 64:118–130. https://doi.org/10.1016/j.nbd.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang TY, Zheng DH, Houmard JA et al (2017) Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. Am J Physiol Endocrinol Metab 312(4):E253–E263. https://doi.org/10.1152/ajpendo.00331.2016

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lopaschuk GD, Ussher JR, Folmes CDL et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (No. 03119023).

Author information

Authors and Affiliations

Authors

Contributions

Rui Wang: design, investigation and writing-original draft; Zhaoguo Shi: project administration; Jinlu Li and Defu Tang: contributed materials; Yanli Guo: conceptualization and writing (review and editing); Shizhen Qin: conceptualization and funding acquisition.

Corresponding author

Correspondence to Shizhen Qin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics approval

All procedures were approved by the Animal Welfare Committee of the Institute of Animal Science, Gansu Agricultural University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Shi, Z., Li, J. et al. Protective Effect of Manganese on Apoptosis and Mitochondrial Function of Heat-Stressed Primary Chick Embryonic Myocardial Cells. Biol Trace Elem Res 200, 4419–4429 (2022). https://doi.org/10.1007/s12011-021-03016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03016-2

Keywords

Navigation