Skip to main content

Advertisement

Log in

Transcriptome Profiling of Duodenum Reveals the Importance of Boron Supplementation in Modulating Immune Activities in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As an essential trace element, appropriate boron supplementation can promote immune function of animals. To illustrate the effects of boron in a rat model, RNA-Seq was conducted for the RNA from duodenum after treatment with different concentration of boron in which boron was given in the form of boric acid. More than 47 million reads were obtained in 0, 10, and 320 mg/L boron (0, 57.21, and 1830.66 mg/L boric acid) treatment groups that produced 58 965 402, 48 607 328, and 46 760 660 clean reads, respectively. More than 95% of the clean reads were successfully matched to the rat reference genome and assembled to generate 32 662 transcripts. A total of 624 and 391 differentially expressed candidate genes (DEGs) were found between 0 vs.10 and 0 vs. 320 mg/L boron comparison groups. We also identified transcription start site, transcription terminal site, and skipped exons as the main alternative splicing events. GO annotations revealed most of DEGs were involved in the regulation of immune activity. The DEGs were enriched in influenza A, herpes simplex infection, cytosolic DNA-sensing pathway, and antigen processing and presentation signaling pathways. The expression levels of genes enriched in these signaling pathways indicate that lower doses of boron could achieve better effects on promoting immune response in the duodenum. These effects on the immune system appear to be mediated via altering the expression patterns of genes involved in the related signaling pathways in a dose-dependent pattern. These data provide more insights into the molecular mechanisms of immune regulation in rats in response to dietary boron treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The datasets generated and/or analyzed during the current study are available in its supplementary information files.

References

  1. Cakir S, Eren M, Senturk M, Sarica ZS (2018) The effect of boron on some biochemical parameters in experimental diabetic rats. Biol Trace Elem Res 184(1):165–172

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Jin E, Deng J, Pei Y, Ren M, Hu Q, Gu Y, Li S (2020) GPR30 mediated effects of boron on rat spleen lymphocyte proliferation, apoptosis, and immune function. Food Chem Toxicol 146:111838

    Article  CAS  PubMed  Google Scholar 

  3. C Gene Ontology (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34(Database issue):D322-326

    Article  CAS  Google Scholar 

  4. Akram M, Matiullah IA, Husaini SN, Malik F (2011) Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan. Biol Trace Elem Res 139(3):287–295

    Article  CAS  PubMed  Google Scholar 

  5. Pizzorno L (2015) Nothing boring about boron. Integr Med (Encinitas) 14(4):35–48

    Google Scholar 

  6. Nielsen FH (2014) Update on human health effects of boron. J Trace Elem Med Biol 28(4):383–387

    Article  CAS  PubMed  Google Scholar 

  7. Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune function. J Trace Elem Exp Med 16(4):291–306

    Article  CAS  Google Scholar 

  8. Gorustovich AA, Nielsen FH (2019) Effects of nutritional deficiency of boron on the bones of the appendicular skeleton of mice. Biol Trace Elem Res 188(1):221–229

    Article  CAS  PubMed  Google Scholar 

  9. Ergul AB, Kara M, Karakukcu C, Tasdemir A, Aslaner H, Ergul MA, Muhtaroglu S, Zararsiz GE, Torun YA (2018) High doses of boron have no protective effect against nephrolithiasis or oxidative stress in a rat model. Biol Trace Elem Res 186(1):218–225

    Article  CAS  PubMed  Google Scholar 

  10. Khaliq H, Jing W, Ke X, Ke-Li Y, Peng-Peng S, Cui L, Wei-Wei Q, Zhixin L, Hua-Zhen L, Hui S, Ju-Ming Z, Ke-Mei P (2018) Boron affects the development of the kidney through modulation of apoptosis, antioxidant capacity, and Nrf2 pathway in the African ostrich chicks. Biol Trace Elem Res 186(1):226–237

    Article  CAS  PubMed  Google Scholar 

  11. Uluisik I, Kaya A, Fomenko DE, Karakaya HC, Carlson BA, Gladyshev VN, Koc A (2011) Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6(11):e27772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henderson KA, Kobylewski SE, Yamada KE, Eckhert CD (2015) Boric acid induces cytoplasmic stress granule formation, eIF2alpha phosphorylation, and ATF4 in prostate DU-145 cells. Biometals 28(1):133–141

    Article  CAS  PubMed  Google Scholar 

  13. Kobylewski SE, Henderson KA, Yamada KE, Eckhert CD (2017) Activation of the EIF2alpha/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake. Biol Trace Elem Res 176(2):278–293

    Article  CAS  PubMed  Google Scholar 

  14. Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA (2019) Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 29(5):339–351

    Article  CAS  PubMed  Google Scholar 

  15. Fry RS, Lloyd KE, Jacobi SK, Siciliano PD, Robarge WP, Spears JW (2010) Effect of dietary boron on immune function in growing beef steers. J Anim Physiol Anim Nutr (Berl) 94(3):273–279

    Article  CAS  Google Scholar 

  16. Bhasker TV, Gowda NKS, Pal DT, Bhat SK, Krishnamoorthy P, Mondal S, Pattanaik AK, Verma AK (2017) Influence of boron supplementation on performance, immunity and antioxidant status of lambs fed diets with or without adequate level of calcium. PLoS One 12(11):e0187203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xiao K, Yang K, Wang J, Sun P, Huang H, Khaliq H, Naeem MA, Zhong J, Peng K (2019) Transcriptional study revealed that boron supplementation may alter the immune-related genes through MAPK signaling in ostrich chick thymus. Biol Trace Elem Res 189(1):209–223

    Article  CAS  PubMed  Google Scholar 

  18. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–685

    Article  CAS  PubMed  Google Scholar 

  19. Agace WW, McCoy KD (2017) Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity 46(4):532–548

    Article  CAS  PubMed  Google Scholar 

  20. Mucida D, Esterhazy D (2018) SnapShot: gut immune niches. Cell 174(6):1600-1600 e1601

    Article  CAS  PubMed  Google Scholar 

  21. Thompson FM, Mayrhofer G, Cummins AG (1996) Dependence of epithelial growth of the small intestine on T-cell activation during weaning in the rat. Gastroenterology 111(1):37–44

    Article  CAS  PubMed  Google Scholar 

  22. Ruemmele FM, Seidman EG, Lentze MJ (2002) Regulation of intestinal epithelial cell apoptosis and the pathogenesis of inflammatory bowel disorders. J Pediatr Gastr Nutr 34(3):254–260

    Article  CAS  Google Scholar 

  23. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771

    Article  CAS  PubMed  Google Scholar 

  24. Shen S, Park JW, Huang J, Dittmar KA, Lu ZX, Zhou Q, Carstens RP, Xing Y (2012) MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res 40(8):e61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  26. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoav B, Yosef H (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57(1):289–300

    Google Scholar 

  28. Young P (1989) p value adjustments for multiple tests in multivariate binomial models. J Am Stat Assoc 84(407):780

    Google Scholar 

  29. C Gene Ontology (2008) The Gene Ontology project in 2008. Nucleic Acids Res 36(Database issue):D440-444

    Article  CAS  Google Scholar 

  30. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480-484

    CAS  PubMed  Google Scholar 

  31. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(Web Server issue):W316-322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hu Q, Li S, Qiao E, Tang Z, Jin E, Jin G, Gu Y (2014) Effects of boron on structure and antioxidative activities of spleen in rats. Biol Trace Elem Res 158(1):73–80

    Article  CAS  PubMed  Google Scholar 

  34. Jin E, Gu Y, Wang J, Jin G, Li S (2016) Effect of supplementation of drinking water with different levels of boron on performance and immune organ parameters of broilers. Ita J Anim Sci 13(2):3152

    Article  Google Scholar 

  35. Jin E, Li S, Ren M, Hu Q, Gu Y, Li K (2017) Boron affects immune function through modulation of splenic T lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol Trace Elem Res 178(2):261–275

    Article  CAS  PubMed  Google Scholar 

  36. Jin E, Pei Y, Liu T, Ren M, Hu Q, Gu Y, Li S (2019) Effects of boron on the proliferation, apoptosis and immune function of splenic lymphocytes through ERα and ERβ. Food Agr Immunol 30(1):743–761

    Article  CAS  Google Scholar 

  37. Jin E, Ren M, Liu W, Liang S, Hu Q, Gu Y, Li S (2017) Effect of boron on thymic cytokine expression, hormone secretion, antioxidant functions, cell proliferation, and apoptosis potential via the extracellular signal-regulated kinases 1 and 2 signaling pathway. J Agric Food Chem 65(51):11280–11291

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Wang C, Wu X, Ren M, Hu Q, Jin E, Gu Y (2021) Effect of boron on microstructure, immune function, expression of tight junction protein, cell proliferation and apoptosis of duodenum in rats. Biol Trace Elem Res 199(1):205–215

    Article  PubMed  Google Scholar 

  39. Liu L, Gong T, Tao W, Lin B, Li C, Zheng X, Zhu S, Jiang W, Zhou R (2019) Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat Immunol 20(12):1681–1691

    Article  CAS  PubMed  Google Scholar 

  40. Broquet AH, Hirata Y, McAllister CS, Kagnoff MF (2011) RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J Immunol 186(3):1618–1626

    Article  CAS  PubMed  Google Scholar 

  41. Loo YM, Gale MJ (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu XY, Kessler DS, Veals SA, Levy DE, Darnell JE Jr (1990) ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci U S A 87(21):8555–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36(4):503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Au-Yeung N, Mandhana R, Horvath CM (2013) Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. JAK-STAT 2(3):e23931

    Article  PubMed  PubMed Central  Google Scholar 

  45. Castanier C, Zemirli N, Portier A, Garcin D, Bidère N, Vazquez A, Arnoult D (2012) MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10(1):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446(7138):916–920

    Article  CAS  PubMed  Google Scholar 

  47. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149

    Article  CAS  PubMed  Google Scholar 

  48. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK (2011) CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth F R 22(3):121–130

    CAS  Google Scholar 

  49. Cui D, Wang J, Zeng Y, Rao L, Chen H, Li W, Li Y, Li H, Cui C, Xiao L (2016) Generating hESCs with reduced immunogenicity by disrupting TAP1 or TAPBP. Biosci Biotechnol Biochem 80(8):1484–1491

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez OA, Novak MJ, Kirakodu S, Orraca L, Chen KC, Stromberg A, Gonzalez-Martinez J, Ebersole JL (2014) Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. J Clin Periodontol 41(4):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gunther E, Walter L (2001) The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics 53(7):520–542

    Article  CAS  PubMed  Google Scholar 

  52. Hurt P, Walter L, Sudbrak R, Klages S, Müller I, Shiina T, Inoko H, Lehrach H, Günther E, Reinhardt R (2004) The genomic sequence and comparative analysis of the rat major histocompatibility complex. Genome Res 14(4):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dressel R, Walter L, Günther E (2001) Genomic and funtional aspects of the rat MHC, the RT1 complex. Immunol Rev 184:82–95

    Article  CAS  PubMed  Google Scholar 

  54. Wang K, Li F, Cui Y, Cui C, Cao Z, Xu K, Han S, Zhu P, Sun Y (2019) The association between depression and type 1 diabetes mellitus: inflammatory cytokines as ferrymen in between? Mediat Inflamm 2019:1–11

    CAS  Google Scholar 

  55. Corsten MF, Schroen B, Heymans S (2012) Inflammation in viral myocarditis: friend or foe? Trends Mol Med 18(7):426–437

    Article  CAS  PubMed  Google Scholar 

  56. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Klingel K, Kandolf R, Sechtem U, Cooper LT (2012) Update on myocarditis. J Am Coll Cardiol 59(9):779–792

    Article  PubMed  Google Scholar 

  57. Mikoś H, Mikoś M, Obara-Moszyńska M, Niedziela M (2014) The role of the immune system and cytokines involved in the pathogenesis of autoimmune thyroid disease (AITD). Endokrynol Pol 65(2):150–155

    Article  PubMed  Google Scholar 

  58. Killick J, Morisse G, Sieger D, Astier AL (2018) Complement as a regulator of adaptive immunity. Semin Immunopathol 40(1):37–48

    Article  CAS  PubMed  Google Scholar 

  59. Abdik EA, Abdik H, Tasli PN, Deniz AAH, Sahin F (2019) Suppressive role of boron on adipogenic differentiation and fat deposition in human mesenchymal stem cells. Biol Trace Elem Res 188(2):384–392

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported in part by the National Natural Science Foundation of China (32002160, 32172816, and 31672502), Anhui Provincial Major Science and Technology Special Program (17030701004, 201903a06020002), Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyqZD2019061), Chuzhou Science and Technology Plan (2019ZN003), the University Research Project of Anhui Province (KJ2020A0081, KJ2019A0801), Anhui Provincial Natural Science Foundation (2108085MC117, 2008085QC140), Anhui Provincial Collaborative Innovation Program (GXXT-2019–035), Foundation of Anhui Science and Technology University (DKYJ201901), and the Innovation Funds for Undergraduate Students of Anhui Province (S202010879109, S202010879120, 202110879059, S202110879175).

Author information

Authors and Affiliations

Authors

Contributions

CZ, SL and EJ designed the study. CZ and YH performed the experiments. CZ, YH, and CW wrote the manuscript. CZ, MR, and QH analyzed the data. YG, PY, SL, and EJ helped revise the manuscript. All authors discussed the data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Shenghe Li or Erhui Jin.

Ethics declarations

The use of all experimental animals was reviewed and approved by the Anhui Laboratory Animal Care Committee. All animal experimental procedures were performed in strict accordance with the Guide for Laboratory Animal Care and Use and complied with the Guide for National Laboratory Animal Healthcare and Use.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Han, Y., Wang, C. et al. Transcriptome Profiling of Duodenum Reveals the Importance of Boron Supplementation in Modulating Immune Activities in Rats. Biol Trace Elem Res 200, 3762–3773 (2022). https://doi.org/10.1007/s12011-021-02983-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02983-w

Keywords

Navigation