Skip to main content

Synthesis and Characterization of Zinc Oxide Nanoparticles of Solanum nigrum and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer

Abstract

Effective cancer therapy can be achieved by using nano-drug delivery systems which provide a targeted drug delivery strategy by overcoming the drawbacks of conventional treatments like chemotherapy and radiation. ZnO nanoparticles are a potent anticancer agent that causes tumor cell destruction with the targeted drug delivery. In this present study, green synthesis of ZnO nanoparticles has been done using the plant Solanum nigrum. The synthesized ZnO nanoparticles were studied by the characterization techniques like UV–visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD. The synthesized ZnO nanoparticles of Solanum nigrum exhibited a significant anticancer activity against HeLa cell lines through the apoptotic pathway. The cytotoxicity of ZnO nanoparticles was assessed using MTT assay, wound healing assay, DAPI staining, and acridine orange and ethidium bromide double staining. The expression patterns of β-catenin, p53, caspase-3, and caspase-9 were analyzed using reverse transcriptase-PCR. The results obtained from the study indicate that the ZnO nanoparticles of Solanum nigrum possess a dose-dependent cytotoxic effect against HeLa cell lines through the inhibition of β-catenin and increasing the levels of p53, caspase-3, and caspase-9.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

S. nigrum :

Solanum nigrum

ZnO:

Zinc oxide

MESn:

Methanolic extract of Solanum nigrum

ZnONPSn:

Zinc oxide nanoparticles of Solanum nigrum

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

SEM:

Scanning electron microscopy

EDX:

Energy dispersive X-ray

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

FTIR:

Fourier transform infrared spectrometer

XRD:

X-ray diffraction

RT-PCR:

Reverse transcriptase-PCR

References

  1. Abbas Z, Rehman S (2018) An overview of cancer treatment modalities. Neoplasm 1:139–157. https://doi.org/10.5772/intechopen.76558

    Article  CAS  Google Scholar 

  2. Wang SJ, Zheng CJ, Peng C, Zhang H, Jiang YP, Han T, Qin LP (2013) Plants and cervical cancer: an overview. Expert Opin Investig Drugs 22(9):1133–1156. https://doi.org/10.1517/13543784.2013.811486

    Article  CAS  PubMed  Google Scholar 

  3. National Center for Disease Informatics and Research (2020) Report of national cancer registry programme (2012-2016). https://www.ncdirindia.org/All_Reports/Report_2020/resources/NCRP_2020_2012_16.pdf. Accessed 12 May 2021

  4. Xavier Bosch F, Michele Manos M, Sherman M (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. Obstet Gynecol Surv 87:796–802. https://doi.org/10.1093/jnci/87.11.796

    Article  Google Scholar 

  5. Jahanshahi M, Dana PM, Badehnoosh B, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi MB, Moazzami B, Chaichian S (2020) Anti-tumor activities of probiotics in cervical cancer. J Ovarian Res 13(1):1–11. https://doi.org/10.1186/s13048-020-00668-x

    Article  Google Scholar 

  6. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6(3):1–15. https://doi.org/10.1101/cshperspect.a026104

    Article  CAS  Google Scholar 

  7. Zhao P, Pang X, Jiang J, Wang L, Zhu X, Yin Y, Zhai Q, Xiang X, Feng F, Xu W (2019) TIPE1 promotes cervical cancer progression by repression of p53 acetylation and is associated with poor cervical cancer outcome. Carcinogenesis 40(4):592–599. https://doi.org/10.1093/carcin/bgy163

    Article  CAS  PubMed  Google Scholar 

  8. Sangeetha N, Aranganathan S, Panneerselvam J, Shanthi P, Rama G, Nalini N (2010) Oral supplementation of silibinin prevents colon carcinogenesis in a long-term preclinical model. Eur J Pharmacol 643(1):93–100. https://doi.org/10.1016/j.ejphar.2010.05.060

    Article  CAS  PubMed  Google Scholar 

  9. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trend’s cell biol 11:372–377. https://doi.org/10.1016/s0962-8924(01)02064-5

    Article  CAS  Google Scholar 

  10. Wang B, Li X, Liu L, Wang M (2020) β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res 53(1):1–1. https://doi.org/10.1186/s40659-020-00301-7

    Article  CAS  Google Scholar 

  11. Donmez HG, Demirezen S, Beksac MS (2016) The relationship between beta-catenin and apoptosis: a cytological and immunocytochemical examination. Tissue Cell 48(3):160–167. https://doi.org/10.1016/j.tice.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30(29):737–750. https://doi.org/10.1016/j.biomaterials.2009.07.008

    Article  CAS  Google Scholar 

  13. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C (2019) Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 47(1):1173–1180. https://doi.org/10.1080/21691401.2018.1549064

    Article  CAS  PubMed  Google Scholar 

  14. Chan HK, Ismail S (2014) Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: experiences, perceptions and informational needs from clinical pharmacists. Asian Pac J Cancer Prev 15(13):5305–5309. https://doi.org/10.7314/apjcp.2014.15.13.5305

    Article  PubMed  Google Scholar 

  15. Yudharaj P, Jasmine Priyadarshini R, Ashok Naik E, Shankar M, Sowjanya R, Sireesha B (2016) Importance and uses of medicinal plant-an overview. Int J Preclinical Pharm Res 7(2):67–73

    Google Scholar 

  16. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS (2019) Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett 413:122–134. https://doi.org/10.1016/j.canlet.2017.11.002

    Article  CAS  Google Scholar 

  17. Ding X, Zhu FS, Li M, Gao SG (2012) Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L. J Ethnopharmacol 139(2):599–604. https://doi.org/10.1016/j.jep.2011.11.058

    Article  CAS  PubMed  Google Scholar 

  18. Patel S, Gheewala N, Suthar A, Shah A (2009) In-vitro cytotoxicity activity of Solanum nigrum extract against HeLa cell line and Vero cell line. Int J Pharm Pharm Sci 1(1):38–46. https://doi.org/10.3923/ijcr.2014.74.80

    Article  Google Scholar 

  19. Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Delivery Formulation 1(1):37–51. https://doi.org/10.2174/187221107779814104

    Article  CAS  Google Scholar 

  20. Mohamed Asik R, Gowdhami B, Mohamed Jaabir MS, Archunan G, Suganthy N (2019) Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater Sci Eng C Mater Biol Appl 103:109840. https://doi.org/10.1016/j.msec.2019.109840

    Article  CAS  Google Scholar 

  21. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, R. Sendi R, (2014) Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells. AIP Conf Proc 1621(1):670–676. https://doi.org/10.1016/j.msec.2019.109840

    Article  CAS  Google Scholar 

  22. Li J, Guo D, Wang X, Wang H, Jiang H, Chen B (2010) The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Res Lett 5:1063–1071. https://doi.org/10.1007/s11671-010-9603-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine 3(9):1–11. https://doi.org/10.5772/63437

    Article  Google Scholar 

  24. Blois M (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  25. Muthuvel A, Jothibas M, Manoharan C (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J Environ Chem Eng 8:103705. https://doi.org/10.1016/j.jece.2020.103705

    Article  CAS  Google Scholar 

  26. Soovali L, Room EI, Kutt A, Kaljurand I, Leito I (2006) Uncertainty sources in UV-Vis spectrophotometric measurement. Accred Qual Assur 11(5):246–455. https://doi.org/10.1007/s00769-006-0124-x

    Article  CAS  Google Scholar 

  27. McMullan D (2006) Scanning electron microscopy 1928–1965. Scanning 17(3):175–185. https://doi.org/10.1002/sca.4950170309

    Article  Google Scholar 

  28. Fultz B, Howe JM (2012) Transmission electron microscopy and diffractometry of materials. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-29761-8

  29. Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5(2):427–432

    Google Scholar 

  30. Dougherty GM, Rose KA, Tok JB, Pannu SS, Chuang FY, Sha MY, Chakarova G, Penn SG (2008) The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis 29(5):1131–1139. https://doi.org/10.1002/elps.200700448

    Article  CAS  PubMed  Google Scholar 

  31. Prati S, Joseph E, Sciutto G, Mazzeo R (2010) New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc Chem Res 43(6):792–801. https://doi.org/10.1021/ar900274f

    Article  CAS  PubMed  Google Scholar 

  32. Felice B, Prabhakaran MP, Rodriguez AP, Ramakrishna S (2014) Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng, C 41:178–195. https://doi.org/10.1016/j.msec.2014.04.049

    Article  CAS  Google Scholar 

  33. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32(1):235–244. https://doi.org/10.1016/j.jeurceramsoc.2011.08.015

    Article  CAS  Google Scholar 

  34. Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P (2014) An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr 8(5):440–451. https://doi.org/10.4161/cam.36224

    Article  PubMed  PubMed Central  Google Scholar 

  35. Uma Suganya KS, Govindaraju K, Prabhu D, Arulvasu C, Karthick V, Changmai N (2016) Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl Surf Sci 371:415–424. https://doi.org/10.2147/IJN.S240293

    Article  Google Scholar 

  36. Yi JL, Shi S, Shen YL, Wang L, Chen HY, Zhu J, Ding Y (2015) Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int J Clin Exp Pathol 8(2):1116–1127

    PubMed  PubMed Central  Google Scholar 

  37. Sankhe NM, EgaDurgashivaprasad N, GopalanKutty J, Venkata Rao K, Narayanan NK, Jain P, Udupa N, Vasanth Raj P (2015) Novel 2, 5-disubstituted-1, 3, 4-oxadiazole derivatives induce apoptosis in HepG2 cells through p53 mediated intrinsic pathway. Arab J Chem 12(8):2548–2555. https://doi.org/10.1016/j.arabjc.2015.04.030

    Article  CAS  Google Scholar 

  38. Veerapagu M, Narayanan S (2018) In vitro antioxidant properties of methanolic extract of Solanum nigrum L. fruit. TPI 7(5):371–374

    Google Scholar 

  39. Murali M, Mahendra C, Rajashekar N, Sudarshana MS, Raveesha KA, Amruthesh KN (2017) Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.–an endemic species. Spectrochim Acta Part A Mol Biomol Spectrosc 179:104–109. https://doi.org/10.1016/j.saa.2017.02.027

    Article  CAS  Google Scholar 

  40. Hasan SR, Hossain MM, Akter R, Jamila M, Mazumder ME, Rahman S (2009) DPPH free radical scavenging activity of some Bangladeshi medicinal plants. J Med Plants Res 3(11):875–879. https://doi.org/10.5897/JMPR.9000460

    Article  Google Scholar 

  41. Alam MN, Roy S, Anisuzzaman SM, Rafiquzzaman M (2012) Antioxidant activity of the ethanolic extracts of leaves, stems and fruits of Solanum nigrum. Pharmacogn Commun 2(3):67–71. https://doi.org/10.5530/pc.2012.3.14

    Article  Google Scholar 

  42. Zak AK, Razali R, Abd Majid WH, Darroudi M (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399–1403. https://doi.org/10.2147/IJN.S19693

    Article  CAS  Google Scholar 

  43. Rajendran SP, Sengodan P (2017) Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanosci 2017:1–7. https://doi.org/10.1155/2017/8348507

    Article  CAS  Google Scholar 

  44. Gusain D, Sharma YC (2013) Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceram Int 39:9803–9808. https://doi.org/10.5923/j.nn.20150504.02

    Article  CAS  Google Scholar 

  45. Jayappa MD, Ramaiah CK, Kumar MA, Suresh D, Prabhu A, Devasya RP, Sheikh S (2020) Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl Nanosci 10(8):3057–3074. https://doi.org/10.1007/s13204-020-01382-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rani V, Verma Y, Rana K, Rana SV (2018) Zinc oxide nanoparticles inhibit dimethyl nitrosamine induced liver injury in rat. Chem Biol Interact 295:84–92. https://doi.org/10.1016/j.cbi.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  47. Ramesh M, Anbuvannan M, Viruthagiri GJ (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

    Article  CAS  Google Scholar 

  48. Cho K, Wang XU, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316. https://doi.org/10.1158/1078-0432.CCR-07-1441

    Article  CAS  PubMed  Google Scholar 

  49. Ali A, Phull AR, Zia M (2018) Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol Rev 7(5):413–441. https://doi.org/10.1515/ntrev-2018-0067

    Article  CAS  Google Scholar 

  50. Namvar F, Rahman HS, Mohamad R, Azizi S, Tahir PM, Chartrand MS, Yeap SK (2015) Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. Evid-Based Complement Altern Med 2015:1–11. https://doi.org/10.1155/2015/593014

    Article  Google Scholar 

  51. Jin H, Yu Y, Chrisler WB, Xiong Y, Hu D, Lei C (2012) Delivery of microRNA-10b with polylysine nanoparticles for inhibition of breast cancer cell wound healing. Breast Cancer 6:9–19. https://doi.org/10.4137/BCBCR.S8513

    Article  CAS  PubMed  Google Scholar 

  52. Sana SS, Kumbhakar DV, Pasha A, Pawar SC, Grace AN, Singh RP, Nguyen VH, Le QV, Peng W (2020) Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: assessment of antimicrobial and anticancer activity. Molecules 25(21):1–21. https://doi.org/10.3390/molecules25214896

    Article  CAS  Google Scholar 

  53. Wang Y, Zhang Y, Guo Y, Lu J, Veeraraghavan VP, Mohan SK, Wang C, Yu X (2019) Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). J Photochem Photobiol, B 201:111624. https://doi.org/10.1016/j.jphotobiol.2019.111624

    Article  CAS  Google Scholar 

  54. Motadi LR, Choene MS, Mthembu NN (2020) Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-69722-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Myself and my co-authors would like to express our sincere gratitude toward Dr. K.M. Saradhadevi, Assistant Professor of the Department of Biochemistry for her constant moral support and guidance throughout this research work.

Author information

Authors and Affiliations

Authors

Contributions

Steffy Thomas: drafting the article and submitting the final version of the article.

Gayathiri Gunasangkaran: drafting the article and submitting the final version of the article.

Vijaya Anand Arumugam: co-author who assisted the corresponding author and first author in writing the article.

Saradhadevi Muthukrishnan: corresponding author who made sustainable contribution for the intellectual input and designing the whole paper.

Corresponding author

Correspondence to Saradhadevi Muthukrishnan.

Ethics declarations

Ethics Approval

For this type of study, formal consent is not required.

Consent to Participate

Informed consent was obtained from all individual participants involved in the study.

Consent for Publication

All individual participants involved in the study reach a consensus to the publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• MESn was used for the synthesis of ZnO nanoparticles.

• Biosynthesized ZnONPSn was characterized using UV–visible spectroscopy, SEM, TEM, DLS, zeta potential, FTIR, and XRD analysis.

• The cytotoxicity of ZnONPSn on HeLa cell lines was determined using MTT assay, wound healing assay, and DAPI and double staining.

• The ZnONPSn showed a significant increase in the level of apoptotic genes p53, caspase-3, and caspase-9 and shows a significant decrease in the level of β-catenin in HeLa cell lines.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Gunasangkaran, G., Arumugam, V.A. et al. Synthesis and Characterization of Zinc Oxide Nanoparticles of Solanum nigrum and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Biol Trace Elem Res 200, 2684–2697 (2022). https://doi.org/10.1007/s12011-021-02898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02898-6

Keywords

  • Cervical cancer
  • Apoptosis
  • Zinc oxide nanoparticles
  • Solanum nigrum
  • Transmission electron microscopy
  • X-ray diffraction