Skip to main content

Investigation of the Oxidative Stress Response of a Green Synthesis Nanoparticle (RP-Ag/ACNPs) in Zebrafish

Abstract

Silver nanoparticles (AgNPs) are prominent nanomaterials that are efficiently used in different industries including medical products, water treatment, and cosmetics. However, AgNPs are known to cause adverse effects on the ecosystem and human health. In this study, aqueous extract of Rumex patientia (RP) was used as a reducing and stabilizing agent in AgNP biosynthesis. The obtained activated carbon (AC) from Chenopodium album (CA) plant was combined with RP-AgNPs to synthesize RP-Ag/AC NPs. Next, the effects of these green synthesis RP-Ag/AC NPs on zebrafish (Danio rerio) embryos and larvae were investigated. First, we characterized the RP-Ag/AC NPs by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and determined LC50 value as 217.23 mg/L at 96 h. Next, the alterations in survival rate, hatching rate, and morphology of the larvae at 96 h were monitored. The survival rates decreased in a dose-dependent manner. Morphological defects such as yolk sac edema, pericardial edema, spinal curvature, and tail malformation in the NP-treated larvae were observed. RP-Ag/AC NPs stimulated the production of neuronal NOS (nNOS) and 8-OHdG in zebrafish brain tissues in a dose-dependent manner and enhanced neutrophil degeneration and necrosis at concentrations of 50 and 100 mg/L. Thus, the obtained data suggest that the green synthesis process is not sufficient to reduce the effect of oxidative stress caused by AgNPs on oxidative signaling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of Data and Materials

Not applicable.

References

  1. Amooaghaie R, Saeri MR, Azizi M (2015) Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120:400–408

    CAS  PubMed  Article  Google Scholar 

  2. Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review BioNanoScience 8(1):5–16

    Article  Google Scholar 

  3. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TrAC, Trends Anal Chem 27(6):497–511

    CAS  Article  Google Scholar 

  4. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, ... Arjmand O (2018) Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial cells, nanomedicine, and biotechnology, 46 (sup3), S855-S872

  5. Wilhelm S, Henneberg A, Köhler HR, Rault M, Richter D, Scheurer M, ... Triebskorn R (2017) Does wastewater treatment plant upgrading with activated carbon result in an improvement of fish health?. Aquatic Toxicology, 192, 184-197

  6. Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11(7):926–930

    CAS  Article  Google Scholar 

  7. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology 47(1):844–851

    CAS  PubMed  Article  Google Scholar 

  8. Alkhalaf MI, Hussein RH, Hamza A (2020) Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences 27(9):2410–2419

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Jayachandran A, Aswathy TR, Nair AS (2021) Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep 26:100995

    PubMed  PubMed Central  Google Scholar 

  10. Nayem SM, Sultana N, Haque M, Miah B, Hasan M, Islam T, ...Ahammad, A. J. (2020) Green synthesis of gold and silver nanoparticles by using Amorphophallus paeoniifolius tuber extract and evaluation of their antibacterial activity. Molecules, 25 (20), 4773

  11. Tailor G, Yadav BL, Chaudhary J, Joshi M, Suvalka C (2020) Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Biophys Rep 24:100848

    PubMed  PubMed Central  Google Scholar 

  12. Singh N, Tailang M, Mehta SC (2016) A review on herbal plants as immunomodulators. Int J Pharmaceutical Sci Res 7(9):3602

    CAS  Google Scholar 

  13. Hande S, Sonkar V, Bhoj P, Togre N, Goswami K, Dash D (2021) The role of oxidative and nitrosative stress of silver nanoparticles in human parasitic helminth Brugia malayi: a mechanistic insight. Acta Parasitol. https://doi.org/10.1007/s11686-021-00394-4

  14. Choudhary, N., Chatterjee, M., Kumar, S., Singh, G., & Suttee, A. (2021). Effect of conventional method and microwave assisted extraction on phytoconstituents of Chenopodium album. Materials Today: Proceedings.

  15. Sedaghat R, Roghani M, Ahmadi M, Ahmadi F (2011) Antihyperglycemic and antihyperlipidemic effect of Rumex patientia seed preparation in streptozotocin-diabetic rats. Pathophysiology 18(2):111–115

    PubMed  Article  Google Scholar 

  16. Elmas SE, Elmas O (2021) Salvia fruticosa’nın (Anadolu adaçayı) terapötik etkileri. Int J Life Sci Biotechnol 4(1):114–137

    Google Scholar 

  17. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y (2019) Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sensors and Actuators B: Chem 298:126874

    CAS  Article  Google Scholar 

  18. Valerio-García RC, Carbajal-Hernández AL, Martínez-Ruíz EB, Jarquín-Díaz VH, Haro-Pérez C, Martínez-Jerónimo F (2017) Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Sci Total Environ 583:308–318

    PubMed  Article  CAS  Google Scholar 

  19. Alak G, Parlak V, Ucar A, Yeltekin AC, Ozgeris FB, Caglar O, ... Turkez H (2020a) Oxidative and DNA damage potential of colemanite on zebrafish: brain, liver and blood. Turkish Journal of Fisheries and Aquatic Sciences, 20 (8), 593-602

  20. Alak G, Özgeriş F B, Yeltekin AÇ, Parlak V, Ucar A, Caglar O, ... Atamanalp M (2020b) Hematological and hepatic effects of ulexite in zebrafish. Environmental Toxicology and Pharmacology, 80, 103496

  21. Alak G, Ucar A, Parlak V, Yeltekin AÇ, Özgeriş FB, Atamanalp M, Türkez H (2021) Antioxidant potential of ulexite in zebrafish brain: assessment of oxidative DNA damage, apoptosis, and response of antioxidant defense system. Biol Trace Elem Res 199(3):1092–1099

    CAS  PubMed  Article  Google Scholar 

  22. Atamanalp M, Parlak V, Özgeriş FB, Çilingir Yeltekin A, Ucar A, Keleş MS, Alak G (2021) Treatment of oxidative stress, apoptosis, and DNA injury with N-acetylcysteine at simulative pesticide toxicity in fish. Toxicol Mech Methods 31(3):224–234

  23. Parlak V (2018) Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere 207:397–403

    CAS  PubMed  Article  Google Scholar 

  24. Uçar A, Parlak V, Çilingir Yeltekin A, Özgeriş FB, Çağlar Ö, Türkez H, ... Atamanalp M (2021) Assesment of hematotoxic, oxidative and genotoxic damage potentials of fipronil in rainbow trout Oncorhynchus mykiss, Walbaum. Toxicology Mechanisms and Methods, 31 (1), 73-80

  25. Kokturk M, Alak G, Atamanalp M (2020) The effects of n-butanol on oxidative stress and apopto

  26. Kokturk M, Altindağ F, Ozhan G, Çalimli MH, Nas MS (2021) Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comparative Biochemistry and Physiol Part C: Toxicol Pharmacol 242:108947

    CAS  Google Scholar 

  27. Demiral H, Güngör C (2016) Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113

    CAS  Article  Google Scholar 

  28. Maheshwaran G, Bharathi NA, Selvi MM, Kumar MK, Kumar RM, Sudhahar S (2020) Green synthesis of silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. J Environ Chem Eng 8(5):104137

    CAS  Article  Google Scholar 

  29. Calimli MH (2020) Magnetic nanocomposite cobalt-multiwalled carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. Int. J. Environ. Sci. Technol. 18(3):723–740

    Article  CAS  Google Scholar 

  30. Westerfield, M. (1995). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon press.

  31. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    CAS  PubMed  Article  Google Scholar 

  32. Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V (2015) Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Safety 113:223–230

    CAS  PubMed  Article  Google Scholar 

  33. Sato K, Li JG, Kamiya H, Ishigaki T (2008) Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J Am Ceramic Soc 91(8):2481–2487

    CAS  Article  Google Scholar 

  34. Ensibi C, Hernández-Moreno D, MíguezSantiyán MP, Daly Yahya MN, Rodríguez FS, Pérez-López M (2014) Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ Toxicol 29(4):386–393

    CAS  PubMed  Article  Google Scholar 

  35. Finney DJ, Stevens WL (1948) A table for the calculation of working probits and weights in probit analysis. Biometrika 35(1/2):191–201

    CAS  PubMed  Article  Google Scholar 

  36. Busvine, J. R. (1971). A critical review of the techniques for testing insecticides. A critical review of the techniques for testing insecticides. 2nd Edition.

  37. Hayes A W, Kruger CL (Eds.) (2014). Hayes’ principles and methods of toxicology. Crc Press.

  38. Schneider-Orelli O (1947) Entomologisches praktikum. Einfühung in die land-und forstwirtschaftliche Insektenkunde. Sauerländer published, Aarau, p 237

  39. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3):733–737

    CAS  PubMed  Article  Google Scholar 

  40. Gasch AP, Payseur BA, Pool JE (2016) The power of natural variation for model organism biology. Trends Genet 32(3):147–154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Shehabeldine AM, Elbahnasawy MA, Hasaballah AI (2021) Green phytosynthesis of silver nanoparticles using Echinochloa stagnina extract with reference to their antibacterial, cytotoxic, and larvicidal activities. BioNanoScience 11(2):526–538

  42. Lee WS, Kim E, Cho HJ, Kang T, Kim B, Kim MY, ...Jeong J (2018) The relationship between dissolution behavior and the toxicity of silver nanoparticles on zebrafish embryos in different ionic environments. Nanomaterials, 8(9), 652

  43. Cowart DA, Guida SM, Shah SI, Marsh AG (2011) Effects of Ag nanoparticles on survival and oxygen consumption of zebra fish embryos, Danio rerio. J Environ Sci Health, Part A 46(10):1122–1128

    CAS  Article  Google Scholar 

  44. Narowska B, Kułażyński M, Łukaszewicz M, Burchacka E (2019) Use of activated carbons as catalyst supports for biodiesel production. Renewable Energy 135:176–185

    CAS  Article  Google Scholar 

  45. Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–352

    CAS  PubMed  Article  Google Scholar 

  46. Choi SJ, Choy JH (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. Int J Nanomed 9(Suppl 2):261

    Google Scholar 

  47. Floris P, Garbujo S, Rolla G, Giustra M, Salvioni L, Catelani T, ...Fiandra L (2021) The role of polymeric coatings for a safe-by-design development of biomedical gold nanoparticles assessed in zebrafish embryo. Nanomaterials, 11 (4), 1004

  48. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    CAS  PubMed  Article  Google Scholar 

  49. Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XHN (2012) In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 25(5):1029–1046

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Khan I, Bahuguna A, Krishnan M, Shukla S, Lee H, Min SH, ... Kang SC (2019) The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Science of the Total Environment, 679, 365-377

  51. Burchacka E, Łukaszewicz M, Kułażyński M (2019) Determination of mechanisms of action of active carbons as a feed additive. Bioorganic chemi 93:102804

    CAS  Article  Google Scholar 

  52. Noh C, Chung Y, Kwon Y (2021) Highly stable aqueous organometallic redox flow batteries using cobalt triisopropanolamine and iron triisopropanolamine complexes. Chem Eng J 405:126966

    CAS  Article  Google Scholar 

  53. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051

    CAS  PubMed  Article  Google Scholar 

  54. Mohamed AS, Dajem SB, Al-Kahtani M, Ali SB, Ibrahim E, Morsy K, Fahmy SR (2021) Silver/chitosan nanocomposites induce physiological and histological changes in freshwater bivalve. J Trace Elements in Medicine Biol 65:126719

    CAS  Article  Google Scholar 

  55. Daou, C., Rafqah, S., Najjar, F., Anane, H., Piram, A., Hamade, A., ... & Wong-Wah-Chung, P. (2020). TiO2 and activated carbon of Argania spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 388, 112183.

  56. Demirezer LÖ, Kuruüzüm-Uz A, Bergere I, Schiewe HJ, Zeeck A (2001) The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia . Phytochemistry 58(8):1213–1217

    CAS  PubMed  Article  Google Scholar 

  57. Gu Y, Zhu D (2021) nNOS-mediated protein-protein interactions: promising targets for treating neurological and neuropsychiatric disorders. J Biomed Res 35(1):1

    Article  Google Scholar 

  58. Hosseinzadeh K, Roghani S, Asadi A, Mogharrebi A, Ganji DD (2020) Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. International Journal of Numerical Methods for Heat & Fluid Flow

  59. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res, Part A 100(4):1033–1043

    Article  CAS  Google Scholar 

  60. Kokturk M Çomaklı S, Özkaraca M, Alak G, Atamanalp M (2021) Teratogenic and neurotoxic effects of n‐butanol on zebrafish development. J Aquat Anim Health 33(2):94–106

  61. Nas MS (2021) AgFe2O4/MWCNT nanoparticles as novel catalyst combined adsorption-sonocatalytic for the degradation of methylene blue under ultrasonic irradiation. J Environ Chem Eng 9(3):105207

    CAS  Article  Google Scholar 

  62. Nas MS, Kaya H (2020) Synthesis and sonocatalytic performance of bimetallic AgCu@ MWCNT nanocatalyst for the degradation of methylene blue under ultrasonic irradiation. Inorganic and Nano-Metal Chemistry, 1–13.

  63. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size‐dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

  64. Yates BJ, Dionysiou DD (2006) Green engineering and nanotechnology. Sustainability science and engineering 1:349–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mine Köktürk: the owner of the research idea and formal analysis. Serkan Yıldırım: resources and formal analysis. Mehmet Salih Nas: green synthesis. Gunes Ozhan: writing—review and editing. Ismail Bolat: resources and formal analysis. Mehmet Harbi Calimli: green synthesis. Muhammed Atamanalp: conceptualization, visualization, writing—review and editing. Gonca Alak: formal analysis, visualization, writing—original draft, writing—review and editing. All the authors read and approved the final version.

Corresponding author

Correspondence to Gonca Alak.

Ethics declarations

Ethics Approval

The study does not require any license (Directive 86/609/EEC and EU Directive, 2010/63/EU).

Consent to Participate

Fisheries, Chemistry, Environmental Science, Natural Science.

Consent to Publish

Biological Trace Element Research has consent to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kokturk, M., Yıldırım, S., Nas, M.S. et al. Investigation of the Oxidative Stress Response of a Green Synthesis Nanoparticle (RP-Ag/ACNPs) in Zebrafish. Biol Trace Elem Res 200, 2897–2907 (2022). https://doi.org/10.1007/s12011-021-02855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02855-3

Keywords

  • Danio rerio
  • Nanoparticle
  • nNOS
  • 8-OHdG
  • Morphological defects
  • Survival rates
  • Patience dock
  • Goosefoot