Skip to main content

Advertisement

Log in

Zinc Alleviates Arsenic-Induced Inflammation and Apoptosis in the Head Kidney of Common Carp by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic (As) pollution is ubiquitous in water, which shows immunotoxicity to aquatic organisms. As an indispensable regulator of gene transcription and enzymatic modification, zinc (Zn) may play a preventive and therapeutic effect on As toxicity. The purpose of this study was to investigate the interactions of As and Zn on the head kidney of common carp Cyprinus carpio. Herein the carp were treated alone or in combination with waterborne As3+ (2.83 mg/L) and/or Zn2+ (1 mg/L). Results suggested a head kidney-toxic effect of As exposure, which was manifested by the histopathological damage of the head kidney, elevation of nuclear translocation of pro-inflammatory nuclear factor-kappa light chain enhancer of B cells (NF-κB), and blockage of the anti-oxidative nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The global activation of three endoplasmic reticulum (ER) stress pathways led to the execution of programmed cell death, including ER apoptosis mediated by C/EBP-homologous protein (CHOP), death receptor–mediated exogenous cell apoptosis, and the endogenous apoptosis executed by Caspases9. The combined application of Zn can significantly improve the histopathological damage of the head kidney, the imbalance of the antioxidant system, and the apoptosis outcomes due to ER stress. In conclusion, this study indicates that Zn has an antagonistic effect on the head kidney injury of common carp induced by sub-chronic As exposure. The results of this study provide basic data for the risk assessment of As accumulation in an aquatic environment and a reference for the use of Zn preparation in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anvarifar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Ucuncu SI, Ouraji H, Ceci M, Romano N (2018) Environmental pollution and toxic substances: cellular apoptosis as a key parameter in a sensible model like fish. Aquat Toxicol 204:144–159. https://doi.org/10.1016/j.aquatox.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Zhao H, Guo M, Fei D, Zhang L, Xing M (2020) Targeting the miR-122/PKM2 autophagy axis relieves arsenic stress. J Hazard Mater 383:121217. https://doi.org/10.1016/j.jhazmat.2019.121217

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Gao Y, Zhao L, Wei Y, Feng H, Wang C, Wei W, Ding Y, Sun D (2012) Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water. Toxicol Appl Pharmacol 259(1):124–132. https://doi.org/10.1016/j.taap.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  4. Gibb HJ, Barchowsky A, Bellinger D, Bolger PM, Carrington C, Havelaar AH, Oberoi S, Zang Y, O’Leary K, Devleesschauwer B (2019) Estimates of the 2015 global and regional disease burden from four foodborne metals - arsenic, cadmium, lead and methylmercury. Environ Res 174:188–194. https://doi.org/10.1016/j.envres.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  5. Sambu S, Wilson R (2008) Arsenic in food and water–a brief history. Toxicol Ind Health 24(4):217–226. https://doi.org/10.1177/0748233708094096

    Article  CAS  PubMed  Google Scholar 

  6. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Liu L, Wang X, Ren J, Jia P, Fan W (2020) Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: a comparative study between As(III) and As(V) exposure. Environ Pollut 256:113459. https://doi.org/10.1016/j.envpol.2019.113459

    Article  CAS  PubMed  Google Scholar 

  8. Zhao H, Wang Y, Fei D, Guo M, Yang X, Mu M, Yu H, Xing M (2019) Destruction of redox and mitochondrial dynamics co-contributes to programmed cell death in chicken kidney under arsenite or/and copper (II) exposure. Ecotoxicol Environ Saf 179:167–174. https://doi.org/10.1016/j.ecoenv.2019.04.062

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Gu YH, Liu M, Bai Y, Liang LY, Wang HL (2017) TBHQ alleviated endoplasmic reticulum stress-apoptosis and oxidative stress by PERK-Nrf2 crosstalk in methamphetamine-induced chronic pulmonary toxicity. Oxid Med Cell Longev 2017:4310475. https://doi.org/10.1155/2017/4310475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu YF, Li XH, Yuan ZP, Li CY, Tian RB, Jia W, Xiao ZP (2015) Allicin improves endoplasmic reticulum stress-related cognitive deficits via PERK/Nrf2 antioxidative signaling pathway. Eur J Pharmacol 762:239–246. https://doi.org/10.1016/j.ejphar.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Zhao H, Liu Y, Nie X, Xing M (2020) Zinc exerts its renal protection effect on arsenic-exposed common carp: a signaling network comprising Nrf2, NF-kappaB and MAPK pathways. Fish Shellfish Immunol 104:383–390. https://doi.org/10.1016/j.fsi.2020.06.031

    Article  CAS  PubMed  Google Scholar 

  12. Arnold MG, Gokulan K, Doerge DR, Vanlandingham M, Cerniglia CE, Khare S (2019) A single or short time repeated arsenic oral exposure in mice impacts mRNA expression for signaling and immunity related genes in the gut. Food Chem Toxicol 132:110597. https://doi.org/10.1016/j.fct.2019.110597

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Zhao H, Liu Y, Li J, Nie X, Huang P, Xing M (2021) Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. Environ Pollut 274:116597. https://doi.org/10.1016/j.envpol.2021.116597

    Article  CAS  PubMed  Google Scholar 

  14. Zhao H, Wang Y, Liu Y, Yin K, Wang D, Li B, Yu H, Xing M (2021) ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-kappaB/ikappaB-alpha pathways regulated by proteasome. Environ Sci Technol 55(9):6171–6183. https://doi.org/10.1021/acs.est.1c00515

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Yang J, Gong Y, Cai J, Zheng Y, Zhang Y, Yu D, Zhang Z (2020) MicroRNA profiling identifies biomarkers in head kidneys of common carp exposed to cadmium. Chemosphere 247:125901. https://doi.org/10.1016/j.chemosphere.2020.125901

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Zheng Z, Cai J, Liu Q, Yang J, Gong Y, Wu M, Shen Q, Xu S (2017) Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat Toxicol 192:171–177. https://doi.org/10.1016/j.aquatox.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  17. Zhang M, Wan K, Zeng J, Lin W, Ye C, Yu X (2020) Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water. Environ Int 135:105351. https://doi.org/10.1016/j.envint.2019.105351

    Article  CAS  PubMed  Google Scholar 

  18. Chouchene L, Pellegrini E, Gueguen MM, Hinfray N, Brion F, Piccini B, Kah O, Said K, Messaoudi I, Pakdel F (2016) Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J Appl Toxicol 36(6):863–871. https://doi.org/10.1002/jat.3285

    Article  CAS  PubMed  Google Scholar 

  19. Jihen EH, Fatima H, Nouha A, Baati T, Imed M, Abdelhamid K (2010) Cadmium retention increase: a probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol Lett 196(2):104–109. https://doi.org/10.1016/j.toxlet.2010.04.006

    Article  CAS  Google Scholar 

  20. Zhao H, Wang Y, Liu J, Guo M, Fei D, Yu H, Xing M (2019) The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environmentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. Environ Pollut 253:741–748. https://doi.org/10.1016/j.envpol.2019.07.065

    Article  CAS  PubMed  Google Scholar 

  21. Castaldo G, Pillet M, Slootmaekers B, Bervoets L, Town RM, Blust R, De Boeck G (2020) Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp Cyprinus carpio. Aquat Toxicol 218:105363. https://doi.org/10.1016/j.aquatox.2019.105363

    Article  CAS  PubMed  Google Scholar 

  22. Vutukuru SS, Prabhath NA, Raghavender M, Yerramilli A (2007) Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita. Int J Environ Res Public Health 4(3):224–227. https://doi.org/10.3390/ijerph2007030005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malekpouri P, Moshtaghie AA, Kazemian M, Soltani M (2011) Protective effect of zinc on related parameters to bone metabolism in common carp fish (Cyprinus carpio L.) intoxified with cadmium. Fish Physiol Biochem 37(1):187–196. https://doi.org/10.1007/s10695-010-9430-7

    Article  CAS  PubMed  Google Scholar 

  24. Altikat S, Uysal K, Kuru HI, Kavasoglu M, Ozturk GN, Kucuk A (2015) The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio). Environ Sci Pollut Res Int 22(5):3212–3218. https://doi.org/10.1007/s11356-014-2896-6

    Article  CAS  PubMed  Google Scholar 

  25. Venturalima J, Fattorini D, Regoli F, Monserrat JM (2009) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157(12):3479–3484. https://doi.org/10.1016/j.envpol.2009.06.023

    Article  CAS  Google Scholar 

  26. Nie X, Wang Y, Zhao H, Guo M, Liu Y, Xing M (2020) As(3+) or/and Cu(2+) exposure triggers oxidative stress imbalance, induces inflammatory response and apoptosis in chicken brain. Ecotoxicol Environ Saf 203:110993. https://doi.org/10.1016/j.ecoenv.2020.110993

    Article  CAS  PubMed  Google Scholar 

  27. Ryan JA, Hightower LE (2010) Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay. Environ Toxicol Chem 13(8):1231–1240. https://doi.org/10.1002/etc.5620130804

    Article  Google Scholar 

  28. Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276(27):25487–25495. https://doi.org/10.1074/jbc.M009154200

    Article  CAS  PubMed  Google Scholar 

  29. Giudice G, Sconzo G, Roccheri MC (1999) Studies on heat shock proteins in sea urchin development. Dev Growth Differ 41(4):375–380. https://doi.org/10.1046/j.1440-169x.1999.00450.x

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Xu Z, Wu Y, Zhang Z, Li X (2020) Impact of ketamine on the behavior and immune system of adult medaka (Oryzias latipes) at environmentally relevant concentrations and eco-risk assessment in surface water. J Hazard Mater 393:121577. https://doi.org/10.1016/j.jhazmat.2019.121577

    Article  CAS  PubMed  Google Scholar 

  31. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19(11):1880–1891. https://doi.org/10.1038/cdd.2012.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martucciello S, Masullo M, Cerulli A, Piacente S (2020) Natural products targeting ER stress, and the functional link to mitochondria. Int J Mol Sci 21(6) https://doi.org/10.3390/ijms21061905

  33. Zhao H, Wang Y, Guo M, Mu M, Yu H, Xing M (2020) Grass carps co-exposed to environmentally relevant concentrations of cypermethrin and sulfamethoxazole bear immunodeficiency and are vulnerable to subsequent Aeromonas hydrophila infection. Environ Pollut 266(Pt 3):115156. https://doi.org/10.1016/j.envpol.2020.115156

    Article  CAS  PubMed  Google Scholar 

  34. Varol S, Kose I (2018) Effect on human health of the arsenic pollution and hydrogeochemistry of the Yazir Lake wetland (Cavdir-Burdur/Turkey). Environ Sci Pollut Res Int 25(16):16217–16235. https://doi.org/10.1007/s11356-018-1815-7

    Article  CAS  PubMed  Google Scholar 

  35. Biswas S, Banna HU, Jahan M, Anjum A, Siddique AE, Roy A, Nikkon F, Salam KA, Haque A, Himeno S, Hossain K, Saud ZA (2020) In vivo evaluation of arsenic-associated behavioral and biochemical alterations in F0 and F1 mice. Chemosphere 245:125619. https://doi.org/10.1016/j.chemosphere.2019.125619

    Article  CAS  PubMed  Google Scholar 

  36. Cai Z, Zhang Y, Zhang Y, Miao X, Li S, Yang H, Ling Q, Hoffmann PR, Huang Z (2019) Use of a mouse model and human umbilical vein endothelial cells to investigate the effect of arsenic exposure on vascular endothelial function and the associated role of calpains. Environ Health Perspect 127(7):77003. https://doi.org/10.1289/EHP4538

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Zhao H, Shao Y, Liu J, Li J, Xing M (2017) Copper or/and arsenic induce oxidative stress-cascaded, nuclear factor kappa B-dependent inflammation and immune imbalance, trigging heat shock response in the kidney of chicken. Oncotarget 8(58):98103–98116. https://doi.org/10.18632/oncotarget.21463

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP (2001) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61(2):314–320. https://doi.org/10.1093/toxsci/61.2.314

    Article  CAS  PubMed  Google Scholar 

  39. Zhou P, Kalakonda N, Comenzo RL (2005) Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol 128(5):636–644. https://doi.org/10.1111/j.1365-2141.2005.05369.x

    Article  CAS  PubMed  Google Scholar 

  40. Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135. https://doi.org/10.1016/j.envres.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  41. Zhao H, Wang Y, Yang X, Fei D, Mu M, Guo M, Yu H, Xing M (2019) Zinc alleviates arsenism in common carp: varied change profiles of cytokines and tight junction proteins among two intestinal segments. Fish Shellfish Immunol 94:761–768. https://doi.org/10.1016/j.fsi.2019.09.069

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Zheng S, Wang S, Wang W, Xing H, Xu S (2019) Chlorpyrifos induced oxidative stress to promote apoptosis and autophagy through the regulation of miR-19a-AMPK axis in common carp. Fish Shellfish Immunol 93:1093–1099. https://doi.org/10.1016/j.fsi.2019.07.022

    Article  CAS  PubMed  Google Scholar 

  43. Ghosh D, Datta S, Bhattacharya S, Mazumder S (2007) Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat Toxicol 81(1):79–89. https://doi.org/10.1016/j.aquatox.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  44. Freitas R, Fraga C (2018) NF-kappaB-IKKbeta pathway as a target for drug development: realities, challenges and perspectives. Curr Drug Targets 19(16):1933–1942. https://doi.org/10.2174/1389450119666180219120534

    Article  CAS  PubMed  Google Scholar 

  45. Hunto ST, Kim HG, Baek KS, Jeong D, Kim E, Kim JH, Cho JY (2020) Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF-kB pathway. Biochem Pharmacol 177:113949. https://doi.org/10.1016/j.bcp.2020.113949

    Article  CAS  PubMed  Google Scholar 

  46. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5(4):318–330. https://doi.org/10.1038/nri1593

    Article  CAS  PubMed  Google Scholar 

  47. Patni H, Mathew JT, Luan L, Franki N, Chander PN, Singhal PC (2007) Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. Am J Physiol Renal Physiol 293(4):F1065–F1071. https://doi.org/10.1152/ajprenal.00147.2007

    Article  CAS  PubMed  Google Scholar 

  48. Chen H, Liu G, Qiao N, Kang Z, Hu L, Liao J, Yang F, Pang C, Liu B, Zeng Q, Li Y, Li Y (2020) Toxic effects of arsenic trioxide on spermatogonia are associated with oxidative stress, mitochondrial dysfunction, autophagy and metabolomic alterations. Ecotoxicol Environ Saf 190:110063. https://doi.org/10.1016/j.ecoenv.2019.110063

    Article  CAS  PubMed  Google Scholar 

  49. Song YF, Hogstrand C, Wei CC, Wu K, Pan YX, Luo Z (2017) Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis. Environ Pollut 228:256–264. https://doi.org/10.1016/j.envpol.2017.05.046

    Article  CAS  PubMed  Google Scholar 

  50. Delaney P, Ramdas NA, Palmer C, Khan N, Sadler KC (2020) Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 409:115307. https://doi.org/10.1016/j.taap.2020.115307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Zhao H, Mu M, Guo M, Xing M (2021) Zinc offers splenic protection through suppressing PERK/IRE1-driven apoptosis pathway in common carp (Cyprinus carpio) under arsenic stress. Ecotoxicol Environ Saf 208:111473. https://doi.org/10.1016/j.ecoenv.2020.111473

    Article  CAS  PubMed  Google Scholar 

  52. Delaunay-Moisan A, Appenzeller-Herzog C (2015) The antioxidant machinery of the endoplasmic reticulum: protection and signaling. Free Radic Biol Med 83:341–351. https://doi.org/10.1016/j.freeradbiomed.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  53. Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M (2021) Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: involvement of blood-brain barrier, oxidative stress and apoptosis. Sci Total Environ 762:143054. https://doi.org/10.1016/j.scitotenv.2020.143054

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Wei Z, Liu W, Wang J, He X, Huang H, Zhang J, Yang Z (2017) Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget 8(3):3773–3780. https://doi.org/10.18632/oncotarget.13931

    Article  PubMed  Google Scholar 

  55. Ikeyama S, Kusumoto K, Miyake H, Rokutan K, Tashiro S (2001) A non-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol. J Hepatol 35(1):53–61. https://doi.org/10.1016/s0168-8278(01)00053-8

    Article  CAS  PubMed  Google Scholar 

  56. Shin MK, Jeong KH, Choi H, Ahn HJ, Lee MH (2018) Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line. J Dermatol Sci 90(3):357–360. https://doi.org/10.1016/j.jdermsci.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  57. Del RL, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177(2):132–148. https://doi.org/10.1006/taap.2001.9291

    Article  CAS  Google Scholar 

  58. Lau AT, He QY, Chiu JF (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 382(Pt 2):641–650. https://doi.org/10.1042/BJ20040224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G (2020) Chronic exposure of hydrogen peroxide alters redox state, apoptosis and endoplasmic reticulum stress in common carp (Cyprinus carpio). Aquat Toxicol 229:105657. https://doi.org/10.1016/j.aquatox.2020.105657

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Zhuang Y, Fang Y, Cao H, Zhang C, Xing C, Guo X, Li G, Liu P, Hu G, Yang F (2021) Endoplasmic reticulum stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP signaling pathway in duck renal tubular epithelial cells. Environ Pollut 272:115981. https://doi.org/10.1016/j.envpol.2020.115981

    Article  CAS  PubMed  Google Scholar 

  61. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  62. Verfaillie T, Garg AD, Agostinis P (2013) Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett 332(2):249–264. https://doi.org/10.1016/j.canlet.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  63. Gao D, Xu Z, Zhang X, Wang H, Wang Y, Min W (2013) Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-9 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Aquat Toxicol 142–143:53–62. https://doi.org/10.1016/j.aquatox.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  64. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389. https://doi.org/10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant No. 30471278) for the financial support of the study.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 30471278).

Author information

Authors and Affiliations

Authors

Contributions

Pengcheng Xing: conceptualization, data curation, software, formal analysis, writing — original draft, writing — review and editing. Yiming Zhang: conceptualization, software, formal analysis, investigation, visualization. Qianru Chi: investigation, data Curation. Shu Li: data curation, validation, resources, funding acquisition, project administration.

Corresponding author

Correspondence to Shu Li.

Ethics declarations

Ethics Approval and Consent to Participate

The Institutional Animal Care and Use Committee of Northeast Agricultural University (SRM-11).

Consent for Publication

The manuscript is approved by all authors for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, P., Zhang, Y., Chi, Q. et al. Zinc Alleviates Arsenic-Induced Inflammation and Apoptosis in the Head Kidney of Common Carp by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Biol Trace Elem Res 200, 2380–2390 (2022). https://doi.org/10.1007/s12011-021-02837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02837-5

Keywords

Navigation