Skip to main content
Log in

Protective Role of the Essential Trace Elements in the Obviation of Cadmium Toxicity: Glimpses of Mechanisms

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is toxic non-essential heavy metal that precipitates adverse health effects in humans and animals. Chelation therapy, the typical treatment for cadmium toxicity, has certain safety and efficacy issues to treat long term cadmium toxicity, in particular. Recent studies have shown that essential trace elements can play important roles in obviating experimental Cd toxicity. This study organizes and reviews the prototypical evidences of the protective effects of essential trace elements against Cd toxicity in animals and attempts to point out the underlying mechanisms. Zinc, selenium, iron, and combinations thereof are reported to be active. The major mechanisms elucidated inter alia are—induction of metallothionein (MT) synthesis and Cd-MT binding (for zinc), modulation of oxidative stress and apoptosis, interference in cadmium absorption and accumulation from body—thereby maintenance of essential metal homeostasis and cytoprotection. Based on the findings, essential trace elements can be recommended for the susceptible population. The application of these trace elements appears beneficial for both the prevention and remediation of long-term Cd toxicity operative via multiple mechanisms with no or minimal adverse effects as compared to the conventional chelation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:557–564

    CAS  PubMed  Google Scholar 

  2. Bhattacharya S (2020) The role of probiotics in the amelioration of cadmium toxicity. Biol Trace Elem Res 197:440–444

    Article  CAS  PubMed  Google Scholar 

  3. Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Caspian J Internal Med 8:135–145

    Google Scholar 

  4. Blanusa M, Varnai VM, Piasek M, Kostial K (2005) Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr Med Chem 12:2771–2794

    Article  CAS  PubMed  Google Scholar 

  5. Flora SJS, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7:2745–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernhoft RA (2013) Cadmium toxicity and treatment. Sci World 2013:394652

    Google Scholar 

  7. Bhattacharya S (2018) The role of medicinal plants and natural products in melioration of cadmium toxicity. Orient Pharm Exp Med 18:177–186

    Article  CAS  Google Scholar 

  8. Bhattacharya S (2017) Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharm Biol 55:349–354

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharya S (2018) Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. Interdiscip Toxicol 11:247–254

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya S (2020) The role of Spirulina (Arthrospira) in the mitigation of heavy-metal toxicity: an appraisal. J Environ Pathol Toxicol Oncol 39:149–157

    Article  PubMed  Google Scholar 

  11. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129

    Article  CAS  PubMed  Google Scholar 

  12. Wada O (2004) What are trace elements? Their deficiency and excess states. J Japan Med Assoc 47:351–358

    Google Scholar 

  13. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75–85

    Article  Google Scholar 

  14. Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814

    Article  CAS  PubMed  Google Scholar 

  15. Moulis JM (2010) Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 23:877–896

    Article  CAS  PubMed  Google Scholar 

  16. Reeves PG, Chaney RL (2004) Marginal nutritional status of zinc, iron, and calcium increases cadmium retention in the duodenum and other organs of rats fed rice-based diets. Environ Res 96:311–322

    Article  CAS  PubMed  Google Scholar 

  17. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Ben RK (2008) Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J Reprod Dev 54:129–134

    Article  CAS  PubMed  Google Scholar 

  18. Babaknejad N, Bahrami S, Moshtaghie AA, Nayeri H, Rajabi P, Iranpour FG (2018) Cadmium testicular toxicity in male Wistar rats: protective roles of zinc and magnesium. Biol Trace Elem Res 185:106–115

    Article  CAS  PubMed  Google Scholar 

  19. Chemek M, Venditti M, Boughamoura S, Mimouna SB, Messaoudi I, Minucci S (2018) Involvement of testicular DAAM1 expression in zinc protection against cadmium-induced male rat reproductive toxicity. J Cell Physiol 233:630–640

    Article  CAS  PubMed  Google Scholar 

  20. Chemek M, Mimouna SB, Boughammoura S, Delbès G, Messaoudi I (2016) Protective role of zinc against the toxicity induced by exposure to cadmium during gestation and lactation on testis development. Reprod Toxicol 63:151–160

    Article  CAS  PubMed  Google Scholar 

  21. Hejazy M, Koohi MK (2017) Effects of nano-zinc on biochemical parameters in cadmium-exposed rats. Biol Trace Elem Res 180:265–274

    Article  CAS  PubMed  Google Scholar 

  22. el Jihen H, Fatima H, Nouha A, Baati T, Imed M, Abdelhamid K (2010) Cadmium retention increase: a probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol Lett 196:104–109

    Article  CAS  Google Scholar 

  23. Babaknejad N, Moshtaghie AA, Nayeri H, Hani M, Bahrami S (2016) Protective role of zinc and magnesium against cadmium nephrotoxicity in male Wistar rats. Biol Trace Elem Res 174:112–120

    Article  CAS  PubMed  Google Scholar 

  24. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161

    Article  CAS  PubMed  Google Scholar 

  25. Rogalska J, Pilat-Marcinkiewicz B, Brzóska MM (2011) Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: a study in a rat model. Chem Biol Interact 193:191–203

    Article  CAS  PubMed  Google Scholar 

  26. Galazyn-Sidorczuk M, Brzóska MM, Rogalska J, Roszczenko A, Jurczuk M (2012) Effect of zinc supplementation on glutathione peroxidase activity and selenium concentration in the serum, liver and kidney of rats chronically exposed to cadmium. J Trace Elem Med Biol 26:46–52

    Article  CAS  PubMed  Google Scholar 

  27. Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152

    Article  CAS  PubMed  Google Scholar 

  28. Brzóska MM, Rogalska J (2013) Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol 272:208–220

    Article  CAS  PubMed  Google Scholar 

  29. Rahman MM, Ukiana J, Lopez RU, Sikder MT, Saito T, Kurasaki M (2017) Cytotoxic effects of cadmium and zinc co-exposure in PC12 cells and the underlying mechanism. Chem Biol Interact 269:41–49

    Article  CAS  PubMed  Google Scholar 

  30. Gao S, Wang X, Wang S, Zhu S, Rong R, Xu X (2017) Complex effect of zinc oxide nanoparticles on cadmium chloride-induced hepatotoxicity in mice: protective role of metallothionein. Metallomics 9:706–714

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Zhen J, Xu J, Cai L, Leng J, Ji H, Keller BB (2020) Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothione independent and independent mechanisms. Acta Pharmacol Sin 41:638–649

    Article  CAS  PubMed  Google Scholar 

  32. Zhang D, Liu J, Gao J, Shahzad M, Han Z, Wang Z, Li J, Sjolinder H (2014) Zinc supplementation protects against cadmium accumulation and cytotoxicity in MadinDarby bovine kidney cells. PLoS One 9:e103427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banni M, Chouchene L, Said K, Kerkeni A, Messaoudi I (2011) Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio. Biometals 24:981–992

    Article  CAS  PubMed  Google Scholar 

  34. Pan J, Huang X, Li Y, Li M, Yao N, Zhou Z, Li X (2017) Zinc protects against cadmium-induced toxicity by regulating oxidative stress, ions homeostasis and protein synthesis. Chemosphere 188:265–273

    Article  CAS  PubMed  Google Scholar 

  35. Luchese C, Brandão R, de Oliveira R, Nogueira CW, Santos FW (2007) Efficacy of diphenyl diselenide against cerebral and pulmonary damage induced by cadmium in mice. Toxicol Lett 173:181–190

    Article  CAS  PubMed  Google Scholar 

  36. Newairy AA, El-Sharaky AS, Badreldeen MM, Eweda SM, Sheweita SA (2007) The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicol 242:23–30

    Article  CAS  Google Scholar 

  37. Liu LL, Li CM, Zhang ZW, Zhang JL, Yao HD, Xu SW (2014) Protective effects of selenium on cadmium-induced brain damage in chickens. Biol Trace Elem Res 158:176–185

    Article  CAS  PubMed  Google Scholar 

  38. Wan N, Xu Z, Liu T, Min Y, Li S (2018) Ameliorative effects of selenium on cadmium-induced injury in the chicken ovary: mechanisms of oxidative stress and endoplasmic reticulum stress in cadmium-induced apoptosis. Biol Trace Elem Res 184:463–473

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:308–319

    Article  CAS  PubMed  Google Scholar 

  40. Song D, Cheng Y, Li X, Wang F, Lu Z, Xiao X, Wang Y (2017) Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces 9:14724–14740

    Article  CAS  PubMed  Google Scholar 

  41. Zhou YJ, Zhang SP, Liu CW, Cai YQ (2009) The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK(1) cells. Toxicol In Vitro 23:288–294

    Article  CAS  PubMed  Google Scholar 

  42. Hossain KFB, Rahman MM, Sikder MT, Saito T, Hosokawa T, Kurasaki M (2018) Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol 114:180–189

    Article  CAS  Google Scholar 

  43. Wang Y, Wu Y, Luo K, Liu Y, Zhou M, Yan S, Shi H, Cai Y (2013) The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol 58:61–67

    Article  CAS  PubMed  Google Scholar 

  44. Zhang R, Yi R, Bi Y, Xing L, Bao J, Li J (2017) The effect of selenium on the Cd-induced apoptosis via NO-mediated mitochondrial apoptosis pathway in chicken liver. Biol Trace Elem Res 178:310–319

    Article  CAS  PubMed  Google Scholar 

  45. El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB (2015) Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol 29:104–110

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Pan T, Wan N, Sun Z, Zhang Z, Li S (2017) Cadmium-induced endoplasmic reticulum stress in chicken neutrophils is alleviated by selenium. J Inorg Biochem 170:169–177

    Article  CAS  PubMed  Google Scholar 

  47. Sadek KM, Lebda MA, Abouzed TK, Nasr SM, Shoukry M (2017) Neuro and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab Brain Dis 32:1659–1673

    Article  CAS  PubMed  Google Scholar 

  48. Zhang R, Wang Y, Wang C, Zhao P, Liu H, Li J, Bao J (2017) Ameliorative effects of dietary selenium against cadmium toxicity is related to changes in trace elements in chicken kidneys. Biol Trace Elem Res 176:391–400

    Article  CAS  PubMed  Google Scholar 

  49. Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat. Biol Trace Elem Res 126:194–203

    Article  CAS  PubMed  Google Scholar 

  50. Saïd L, Banni M, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 48:2759–2765

    Article  CAS  PubMed  Google Scholar 

  51. el Jihen H, Imed M, Fatima H, Abdelhamid K (2009) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf 72:1559–1564

    Article  CAS  Google Scholar 

  52. Branca JJV, Morucci G, Maresca M, Tenci B, Cascella R, Paternostro F, Ghelardini C, Gulisano M, Di Cesare ML, Pacini A (2018) Selenium and zinc: two key players against cadmium-induced neuronal toxicity. Toxicol In Vitro 48:159–169

    Article  CAS  PubMed  Google Scholar 

  53. Ryu DY, Lee SJ, Park DW, Choi BS, Klaassen CD, Park JD (2004) Dietary iron regulates intestinal cadmium absorption through iron transporters in rats. Toxicol Lett 152:19–25

    Article  CAS  PubMed  Google Scholar 

  54. Min KS, Ueda H, Kihara T, Tanaka K (2008) Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals. Toxicol Sci 106:284–289

    Article  CAS  PubMed  Google Scholar 

  55. Jamakala O, Rani AU (2015) Amelioration effect of zinc and iron supplementation on selected oxidative stress enzymes in liver and kidney of cadmium-treated male albino rat. Toxicol Int 22:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jamakala O, Rani AU (2014) Mitigating role of zinc and iron against cadmium induced toxicity in liver and kidney of male albino rat: a study with reference to metallothionein quantification. Int J Pharm Pharm Sci 6:411–417

    CAS  Google Scholar 

  57. Djukić-Ćosić D, Ninković M, Maličević Z, Matović V, Soldatović D (2007) Effect of magnesium pretreatment on reduced glutathione levels in tissues of mice exposed to acute and subacute cadmium intoxication: a time course study. Magnes Res 20:177–186

    PubMed  Google Scholar 

  58. Djukić-Ćosić D, Ninković M, Maličevic Ž, Plamenac-Bulat Z, Matović V (2006) Effect of supplemental magnesium on the kidney levels of cadmium, zinc, and copper of mice exposed to toxic levels of cadmium. Biol Trace Elem Res 114:281–291

    Article  PubMed  Google Scholar 

  59. Buha A, Bulat Z, Dukić-Ćosić D, Matović V (2012) Effects of oral and intraperitoneal magnesium treatment against cadmium-induced oxidative stress in plasma of rats. Arh Hig Rada Toksikol 63:247–254

    Article  CAS  PubMed  Google Scholar 

  60. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signalling Inflammopharmacol 25:11–24

    CAS  Google Scholar 

  61. Yu H, Zhen J, Leng J, Cai L, Ji H, Keller BB (2021) Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 42:340–346

    Article  CAS  PubMed  Google Scholar 

  62. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ziller A, Fraissinet-Tachet L (2018) Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 10:1549–1559

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki CA, Ohta H, Albores A, Koropatnick J, Cherian MG (1990) Induction of metallothionein synthesis by zinc in cadmium pretreated rats. Toxicol 63:273–284

    Article  CAS  Google Scholar 

  65. Nordberg M, Nordberg G (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:451–463

    CAS  PubMed  Google Scholar 

  66. Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, de Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6:24

    Article  CAS  PubMed Central  Google Scholar 

  67. Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/ Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6:3777–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Whanger P (1992) Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. J Trace Elem Electrolytes Health Dis 6:209–221

    CAS  PubMed  Google Scholar 

  69. Dauplais M, Lazard M, Blanquet S, Plateau P (2013) Neutralization by metal ions of the toxicity of sodium selenide. PLoS One 8:e54353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koedrith P, Seo YR (2011) Advances in carcinogenic metal toxicity and potential molecular markers. Int J Mol Sci 12:9576–9595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCarty MF (2012) Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Med Hypotheses 79:642–648

    Article  CAS  PubMed  Google Scholar 

  72. Yamane Y, Fukuchi M, Li C, Koizumi T (1990) Protective effect of sodium molybdate against the acute toxicity of cadmium chloride. Toxicol 60:235–243

    Article  CAS  Google Scholar 

  73. Åkesson A, Berglund M, Schütz A, Bjellerup P, Bremme K, Vahter M (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nishijo M, Tawara K, Honda R, Kuriwaki J, Nakagawa H, Tanebe K, Saito S (2004) Cadmium and nutritional intake in pregnant Japanese women. Toxicol Lett 148:171–176

    Article  CAS  PubMed  Google Scholar 

  75. Schutte R, Nawrot TS, Richart T, Thijs L, Vanderschueren D, Kuznetsova T, Van HE, Roels HA, Staessen JA (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Bhattacharya.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Informed Consent

Informed consent is not applicable in this study.

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S. Protective Role of the Essential Trace Elements in the Obviation of Cadmium Toxicity: Glimpses of Mechanisms. Biol Trace Elem Res 200, 2239–2246 (2022). https://doi.org/10.1007/s12011-021-02827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02827-7

Keywords

Navigation