Skip to main content
Log in

Bimodal Effects of P2Y12 Antagonism on Matrix Metalloproteinase–Associated Contractile Dysfunction in İnsulin-Resistant Mammalian Heart

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The matrix metalloproteinases (MMPs) contribute to matrix remodeling in diabetes via tissue degradation; however, their contributions can be different depending on the pathology. For instance, MMPs are elevated in acute stress hyperglycemia, whereas they can be degraded in chronic hyperglycemia. Since studies emphasize the possible cardioprotective effect of ticagrelor (Tica) beyond its antiplatelet action, we aimed to examine whether Tica treatment can reverse the depressed heart function of metabolic syndrome (MetS) rats via affecting the expression levels of MMPs. Tica treatment of high-carbohydrate-induced MetS rats could not affect significantly the depressed contractile activity of Langendorff-perfused heart preparations. On the other hand, the Tica treatment provided a significant recovery in the reduced relaxation activity of the aortic preparations from the same animals. Histological examination of the hearts demonstrated marked damages in Mets rats, such as increases in the number of foamy cells and accumulation of collagen fiber and increases in the elastic lamellar irregularity of tunica media, while Tica treatment provided a slight improvement in the structure of left ventricle tissue. We also could not obtain a significant reverse in the high cytosolic labile Zn2+ ([Zn2+]i) with the treatment of cardiomyocytes with Tica. Furthermore, Tica treatment of MetS rats could not significantly reverse the degraded protein levels of MMP-2 and MMP-9 in the heart, as well. Overall, we demonstrated that Tica treatment of MetS rats has no significant benefits on the depressed heart function, although provide a significant beneficial impact on vascular relaxation. This action of Tica may be through its lack of action on both MMP degradation and high [Zn2+]i, which can further precipitate in cleavage of extracellular matrix in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and data materials are available if required.

References

  1. Onat A, Aydin M, Can G, Cakmak HA, Koroglu B, Kaya A, Ademoglu E (2013) Impaired fasting glucose: pro-diabetic, “atheroprotective” and modified by metabolic syndrome. World J Diabetes 4(5):210–218. https://doi.org/10.4239/wjd.v4.i5.210

    Article  PubMed  PubMed Central  Google Scholar 

  2. Veronica G, Esther RR (2012) Aging, metabolic syndrome and the heart. Aging Dis 3(3):269–279

    PubMed  PubMed Central  Google Scholar 

  3. Durak A, Olgar Y, Tuncay E, Karaomerlioglu I, Kayki Mutlu G, Arioglu Inan E, Altan VM, Turan B (2017) Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Canadian Journal of Physiology and Pharmacology 95(11):1335–1342. https://doi.org/10.1139/cjpp-2017-0054

  4. Okatan EN, Durak AT, Turan B (2016) Electrophysiological basis of metabolic-syndrome-induced cardiac dysfunction. Can J Physiol Pharmacol 94(10):1064–1073. https://doi.org/10.1139/cjpp-2015-0531

    Article  CAS  PubMed  Google Scholar 

  5. Voulgari C, Moyssakis I, Papazafiropoulou A, Perrea D, Kyriaki D, Katsilambros N, Tentolouris N (2010) The impact of metabolic syndrome on left ventricular myocardial performance. Diabetes Metab Res Rev 26(2):121–127

    Article  CAS  PubMed  Google Scholar 

  6. Ilkun O, Boudina S (2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19(27):4806–4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Durak A, Bitirim CV, Turan B (2020) Titin and CK2α are new intracellular targets in acute insulin application-associated benefits on electrophysiological parameters of left ventricular cardiomyocytes from insulin-resistant metabolic syndrome rats. Cardiovasc Drugs Ther 34(4):487–501. https://doi.org/10.1007/s10557-020-06974-2

    Article  CAS  PubMed  Google Scholar 

  8. Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E, Turan B (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17(1):144. https://doi.org/10.1186/s12933-018-0790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olgar Y, Ozdemir S, Turan B (2018) Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart. Mol Cell Biochem 440(1–2):209–219. https://doi.org/10.1007/s11010-017-3168-9

    Article  CAS  PubMed  Google Scholar 

  10. Tuncay E, Turan B (2016) Intracellular Zn(2+) Increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res 169(2):294–302. https://doi.org/10.1007/s12011-015-0423-3

    Article  CAS  PubMed  Google Scholar 

  11. Olgar Y, Turan B (2019) A sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin comparison with insulin shows important effects on zn2+-transporters in cardiomyocytes from insulin-resistant metabolic syndrome rats through inhibition of oxidative stress. Can J Physiol Pharmacol 97(6):528–535. https://doi.org/10.1139/cjpp-2018-0466

    Article  CAS  PubMed  Google Scholar 

  12. Portik-Dobos V, Anstadt MP, Hutchinson J, Bannan M, Ergul A (2002) Evidence for a matrix metalloproteinase induction/activation system in arterial vasculature and decreased synthesis and activity in diabetes. Diabetes 51(10):3063–3068

    Article  CAS  PubMed  Google Scholar 

  13. Mclennan SV, Fisher E, Martell SY, Death AK, Williams PF, Lyons JG, Yue DK (2000) Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells: possible role in diabetic nephropathy. Kidney Int 58:S81–S87

    Article  Google Scholar 

  14. Kuliczkowski W, Radomski M, Gąsior M, Urbaniak J, Kaczmarski J, Mysiak A, Negrusz-Kawecka M, Bil-Lula I (2017) MMP-2, MMP-9, and TIMP-4 and Response to Aspirin in Diabetic and Nondiabetic Patients with Stable Coronary Artery Disease: A PilotStudy. BioMed Research International 2017:9352015

  15. Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B, Schulz R (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155(8):1174–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lachowski D, Cortes E, Rice A, Pinato D, Rombouts K, del Rio HA (2019) Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  17. Bertelsen DM, Neergaard JS, Bager CL, Nielsen SH, Secher NH, Svendsen JH, Bihlet AR, Andersen JR, Karsdal MA, Christiansen C (2018) Matrix metalloproteinase mediated type I collagen degradation is an independent predictor of increased risk of acute myocardial infarction in postmenopausal women. Sci Rep 8(1):1–7

    Article  CAS  Google Scholar 

  18. Hosford GE, Fang X, Olson DM (2004) Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization. Pediatr Res 56(1):26–34

    Article  CAS  PubMed  Google Scholar 

  19. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  20. Holanda AOdN, Oliveira ARSd, Cruz KJC, Severo JS, Morais JBS, Silva BBd, Marreiro DdN (2017) Zinc and metalloproteinases 2 and 9: what is their relation with breast cancer? Rev Assoc Méd Bras 63(1):78–84

    Article  PubMed  Google Scholar 

  21. Sweeny JM, Angiolillo DJ, Franchi F, Rollini F, Waksman R, Raveendran G, Dangas G, Khan ND, Carlson GF, Zhao Y (2017) Impact of diabetes mellitus on the pharmacodynamic effects of ticagrelor versus clopidogrel in troponin-negative acute coronary syndrome patients undergoing ad hoc percutaneous coronary intervention. J Am Heart Assoc 6(4):e005650

    Article  PubMed  PubMed Central  Google Scholar 

  22. Capodanno D, Dharmashankar K, Angiolillo DJ (2010) Mechanism of action and clinical development of ticagrelor, a novel platelet ADP P2Y12 receptor antagonist. Expert Rev Cardiovasc Ther 8(2):151–158

    Article  CAS  PubMed  Google Scholar 

  23. Sumaya W, Storey RF (2017) Ticagrelor: effects beyond the P2Y12 receptor. Interv Cardiol Clin 6(1):49–55

    PubMed  Google Scholar 

  24. Aït MO, Gaubert M, Laine M, Bonello L, Guieu R, Cautela J, Peyrol M, Barraud J, Thuny F, Dignat-Georges F (2016) Pleiotropic effects of ticagrelor: myth or reality? Arch Cardiovasc Dis 109(8–9):445

    Google Scholar 

  25. Olgar Y, Tuncay E, Billur D, Durak A, Ozdemir S, Turan B (2020) Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Mol Cell Biochem 469(1–2):97–107. https://doi.org/10.1007/s11010-020-03731-9

    Article  CAS  PubMed  Google Scholar 

  26. Liu O, Jia L, Liu X, Wang Y, Wang X, Qin Y, Du J, Zhang H (2012) Clopidogrel, a platelet P2Y12 receptor inhibitor, reduces vascular inflammation and angiotensin II induced-abdominal aortic aneurysm progression. PloS one 7(12):e51707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turan B, Bayari S, Balcik C, Severcan F, Akkas N (2000) A biomechanical and spectroscopic study of bone from rats with selenium deficiency and toxicity. Biometals 13(2):113–121

    Article  CAS  PubMed  Google Scholar 

  28. Sayar K, Ugur M, Gürdal H, Onaran O, Hotomaroglu O, Turan B (2000) Dietary selenium and vitamin E intakes alter β-adrenergic response of L-type Ca-current and β-adrenoceptor-adenylate cyclase coupling in rat heart. J Nutr 130(4):733–740

    Article  CAS  PubMed  Google Scholar 

  29. Turan B, Acan NL, Ulusu NN, Tezcan EF (2001) A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues. Biol Trace Elem Res 81(2):141–152

    Article  CAS  PubMed  Google Scholar 

  30. Calligaris SD, Lecanda M, Solis F, Ezquer M, Gutierrez J, Brandan E, Leiva A, Sobrevia L, Conget P (2013) Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy. PLoS One 8(4):e60931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okatan EN, Tuncay E, Hafez G, Turan B (2015) Profiling of cardiac β-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 93(7):517–525. https://doi.org/10.1139/cjpp-2014-0507

    Article  CAS  PubMed  Google Scholar 

  32. Okatan EN, Olgar Y, Tuncay E, Turan B (2019) Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Mol Cell Biochem 461(1–2):65–72. https://doi.org/10.1007/s11010-019-03590-z

    Article  CAS  PubMed  Google Scholar 

  33. Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66(5):1346–1358. https://doi.org/10.2337/db16-1099

    Article  CAS  PubMed  Google Scholar 

  34. Olgar Y, Degirmenci S, Durak A, Billur D, Can B, Mutlu GK, Inan EA, Turan B (2018) Aging-related functional and structural changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance. Experimental Gerontology 110:172–181

  35. Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 10(5):602–608. https://doi.org/10.1016/s0955-0674(98)80035-5

    Article  CAS  PubMed  Google Scholar 

  36. Kucuk M, Celen MC, Yamasan BE, Olgar Y, Ozdemir S (2015) Effects of ticagrelor on ionic currents and contractility in rat ventricular myocytes. Cardiovasc Drugs Ther 29(5):419–424. https://doi.org/10.1007/s10557-015-6617-2

    Article  CAS  PubMed  Google Scholar 

  37. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies. BMC Med 9(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29(7):777–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berg G, Schreier L, Miksztowicz V (2014) Circulating and adipose tissue matrix metalloproteinases in cardiometabolic risk environments: pathophysiological aspects. Horm Mol Biol Clin Invest 17(2):79–87

    CAS  Google Scholar 

  41. Hopps E, Caimi G (2012) Matrix metalloproteinases in metabolic syndrome. Eur J Intern Med 23(2):99–104

    Article  CAS  PubMed  Google Scholar 

  42. Kadoglou N, Vrabas I, Sailer N, Kapelouzou A, Fotiadis G, Noussios G, Karayannacos P, Angelopoulou N (2010) Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab 36(2):144–151

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Han X, Li M, Han Y, Zhang Y, Zhao S, Li Y (2018) Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress. Microvasc Res 119:98–104

    Article  CAS  PubMed  Google Scholar 

  44. Schnorbus B, Daiber A, Jurk K, Warnke S, König J, Krahn U, Lackner K, Munzel T, Gori T (2014) Effects of clopidogrel, prasugrel and ticagrelor on endothelial function, inflammatory and oxidative stress parameters and platelet function in patients undergoing coronary artery stenting for an acute coronary syndrome. A randomised, prospective, controlled study. BMJ Open 4(5):e005268

    Article  PubMed  PubMed Central  Google Scholar 

  45. Turan B (2019) A brief overview from the physiological and detrimental roles of zinc homeostasis via zinc transporters in the heart. Biol Trace Elem Res 188(1):160–176. https://doi.org/10.1007/s12011-018-1464-1

    Article  CAS  PubMed  Google Scholar 

  46. Fukada T, Kambe T (2014) Zinc signals in cellular functions and disorders: Springer

  47. Akdas S, Turan B, Durak A, Aribal Ayral P, Yazihan N (2020) The relationship between metabolic syndrome development and tissue trace elements status and inflammatory markers. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02046-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Turan B, Tuncay E (2017) Impact of labile zinc on heart function: from physiology to pathophysiology. Int J Mol Sci 18(11):2395. https://doi.org/10.3390/ijms18112395

    Article  CAS  PubMed Central  Google Scholar 

  49. Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89(3):634–642. https://doi.org/10.1093/cvr/cvq352

    Article  CAS  PubMed  Google Scholar 

  50. Yaras N, Bilginoglu A, Koksoy A, Schulz R, Turan B (2007) Reduced myocardial contractile function in diabetic cardiomyopathy—possible role of matrix metalloproteinase-2. J Mol Cell Cardiol 42(6):S162

    Article  Google Scholar 

  51. Tuncay E, Turan B (2016) Intracellular Zn2+ increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res 169(2):294–302. https://doi.org/10.1007/s12011-015-0423-3

    Article  CAS  PubMed  Google Scholar 

  52. Tuncay E, Okatan EN, Vassort G, Turan B (2013) ß-blocker timolol prevents arrhythmogenic Ca2+ release and normalizes Ca2+ and Zn2+ dyshomeostasis in hyperglycemic rat heart. PloS one 8(7):e71014. https://doi.org/10.1371/journal.pone.0071014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hua Y, Xue J, Sun F, Zhu L, Xie M (2009) Aspirin inhibits MMP-2 and MMP-9 expressions and activities through upregulation of PPARα/γ and TIMP gene expressions in ox-LDL-stimulated macrophages derived from human monocytes. Pharmacology 83(1):18–25

    Article  CAS  PubMed  Google Scholar 

  54. Moulias A, Xanthopoulou I, Alexopoulos D (2019) Does ticagrelor improve endothelial function? J Cardiovasc Pharmacol Ther 24(1):11–17

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants (No. SGAB-216S979) from The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Contributions

BT designed and supervised the research and provided the final approval of the version to be published; YO and ET contributed and performed the experiments and analyzed the data; DB performed all light and electron microscopic analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Belma Turan.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental protocols were approved by the Institutional Animal Care and Use Committee of the Ankara University. All animals received humane care under an institutionally approved experimental animal protocol with an ethical license in Turkey.

Research İnvolving Human Participants and/or Animals

Research involved no human data.

Consent for Publication

None.

Competing İnterests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, Y., Tuncay, E., Billur, D. et al. Bimodal Effects of P2Y12 Antagonism on Matrix Metalloproteinase–Associated Contractile Dysfunction in İnsulin-Resistant Mammalian Heart. Biol Trace Elem Res 200, 2195–2204 (2022). https://doi.org/10.1007/s12011-021-02816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02816-w

Keywords

Navigation