Skip to main content

Advertisement

Log in

Analysis and Health Risk Assessment of Potentially Toxic Elements in Three Codonopsis Radix Varieties in China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As a valuable medicine food homology plant, Codonopsis Radix has been widely used in China. This study aimed to analyze the content of nine potentially toxic elements in three Codonopsis Radix varieties and evaluate their health risks to the human body. In this study, a total of 147 samples were collected from five provinces in China. The content of nine potentially toxic elements (Al, Mn, Cu, Cr, Ni, As, Pb, Cd, and Hg) were determined by ICP-MS. Results showed that the average contents of Al, Mn, Cu, Cr, Ni, Pb, As, Cd, and Hg were 486.81, 30.30, 5.59, 1.38, 1.24, 0.40, 0.20, 0.16, and 0.11 mg/kg, respectively. The Codonopsis tangshen Oliv. samples from Hubei showed the highest contents of eight elements (Al, Mn, Cr, Ni, Pb, As, Cd, and Hg) among three varieties, and the highest Cu level was found in Codonopsis pilosula (Franch.) Nannf. samples from Shanxi. The content of toxic elements in three Codonopsis Radix varieties showed significant differences (p < 0.05). LDA models facilitated the identification of three Codonopsis Radix varieties with a 91.2% classification score and 89.1% prediction score. Further, when Codonopsis Radix was used as food or medicine, both the hazard quotient values for single element and the hazard index values for nine elements (0.87 for food and 0.84 for medicine) were far below one. The carcinogenic risk values for Pb in Codonopsis Radix when used as food or medicine were 1.14 × 10–6 and 5.51 × 10–8; the values for As were 4.80 × 10–5 and 4.98 × 10–6, respectively. It indicated that under the current consumption of Codonopsis Radix, the non-carcinogenic and carcinogenic risks from these potentially toxic elements were acceptable for consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

C. pilosula :

Codonopsis pilosula (Franch.) Nannf.

C. pilosula var. modesta :

Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen

C. tangshen :

Codonopsis tangshen Oliv

TCM:

Traditional Chinese medicine

CR:

Carcinogenic risk

HQ:

Hazard quotient

HI:

Hazard index

ANOVA:

Analysis of variance

PCA:

Principal component analysis

LDA:

Linear discriminant analysis

References

  1. Zou YF, Zhang YY, Paulsen BS et al (2020) Prospects of Codonopsis pilosula polysaccharides: structural features and bioactivities diversity. Trends Food Sci Technol 103:1–11. https://doi.org/10.1016/j.tifs.2020.06.012

    Article  CAS  Google Scholar 

  2. National Pharmacopoeia Commission (2020) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing, China

    Google Scholar 

  3. He JY, Ma N, Zhu S et al (2014) The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. J Nat Med 69:1–21. https://doi.org/10.1007/s11418-014-0861-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bin BR, Zhang YJ, Fan JM et al (2020) Immune-enhancement effects of oligosaccharides from: Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 11:3306–3315. https://doi.org/10.1039/c9fo02969a

    Article  CAS  Google Scholar 

  5. Zhou L, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359. https://doi.org/10.1177/0091270005282630

    Article  CAS  PubMed  Google Scholar 

  6. Wang ZT, Du Q, Xu GJ et al (1997) Investigations on the protective action of Condonopsis pilosula (Dangshen) extract on experimentally-induced gastric ulcer in rats. Gen Pharmacol 28:469–473. https://doi.org/10.1016/S0306-3623(96)00047-X

    Article  PubMed  Google Scholar 

  7. Harris ESJ, Cao S, Littlefield BA et al (2011) Heavy metal and pesticide content in commonly prescribed individual raw Chinese Herbal Medicines. Sci Total Environ 409:4297–4305. https://doi.org/10.1016/j.scitotenv.2011.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. US EPA (2000a) Risk-based concentration table. Philadelphia PA: United States Environmental Protection Agency, Washington DC

  9. Nishijo M, Nakagawa H, Suwazono Y et al (2017) Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open 7:1–7. https://doi.org/10.1136/bmjopen-2016-015694

    Article  Google Scholar 

  10. Bernhoft RA (2013) Cadmium toxicity and treatment. Scientific World Journal 2013:394652. https://doi.org/10.1155/2013/394652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shameem K, Abdul M, Sammanthi S et al (2015) Arsenic and human health effects : a review. Environ Toxicol Pharmacol 40:828–846. https://doi.org/10.1016/j.etap.2015.09.016

    Article  CAS  Google Scholar 

  12. Reilly SB, Mccarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s health YMPS 40(186):215. https://doi.org/10.1016/j.cppeds.2010.07.002

    Article  Google Scholar 

  13. Wani AL, Ara A, Usmani JA (2015) Lead toxicity : a review. Interdiscip Toxicol 8(2):55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zul U, Farooq M, Hussain S (2019) Lead toxicity in plants : impacts and remediation. J Environ Manage 250:109557. https://doi.org/10.1016/j.jenvman.2019.109557

    Article  CAS  Google Scholar 

  15. Klotz K, Weistenhöfer W, Neff F et al (2017) The health effects of aluminum exposure. Dtsch Arztebl Int 114(39):653–660. https://doi.org/10.3238/arztebl.2017.0653

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poonkothai M, Vijayavathi BS (2012) Nickel as an essential element and a toxicant. Int J Environ Sci Te 1(4):285–288

    Google Scholar 

  17. Rajeswari S, Swaminathan S (2014) Role of copper in health and diseases. Int J Curr Sci 10:94–107

    Google Scholar 

  18. Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40(9):1183–1197. https://doi.org/10.1002/jat.3965

    Article  CAS  PubMed  Google Scholar 

  19. Neal SLO, Zheng W (2015) Manganese toxicity upon overexposure : a decade in review. Curr Environ Health Rep 2(3):315–328. https://doi.org/10.1007/s40572-015-0056-x

    Article  CAS  Google Scholar 

  20. Ye J, Liu C, Zhao Z et al (2013) Heavy metals in plants and substrate from simulated extensive green roofs. Ecol Eng 55:29–34. https://doi.org/10.1016/j.ecoleng.2013.02.012

    Article  Google Scholar 

  21. Luo L, Wang B, Jiang J et al (2021) Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments, and solutions. Front Pharmacol 11:1–14. https://doi.org/10.3389/fphar.2020.595335

    Article  CAS  Google Scholar 

  22. Nath A, Chakraborty D, Das S (2020) Assessment of lead and cadmium in fifty-four Indian herbal medicine: tribal and marketed varieties. Environ Sci Pollut Res 27:4127–4136. https://doi.org/10.1007/s11356-019-07091-w

    Article  CAS  Google Scholar 

  23. Asgari Lajayer B, Ghorbanpour M, Nikabadi S (2017) Heavy metals in contaminated environment: destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 145:377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035

    Article  CAS  PubMed  Google Scholar 

  24. Mulaudzi RB, Tshikalange TE, Olowoyo JO et al (2017) Antimicrobial activity, cytotoxicity evaluation and heavy metal content of five commonly used South African herbal mixtures. South African J Bot 112:314–318. https://doi.org/10.1016/j.sajb.2017.06.024

    Article  CAS  Google Scholar 

  25. US EPA (2000b) Handbook for non-cancer health effects evaluation. United States Environmental Protection Agency, Washington (DC)

  26. NSF International, Dietary supplement-standard 173: Metal contaminant accepted level, Ann Arbor (2003) 3–4.

  27. Kohzadi S, Shahmoradi B, Ghaderi E et al (2019) Concentration, source, and potential human health risk of heavy metals in the commonly consumed medicinal plants. Biol Trace Elem Res 187:41–50. https://doi.org/10.1007/s12011-018-1357-3

    Article  CAS  PubMed  Google Scholar 

  28. Zheng L, Zhang Q, Li Z et al (2020) Exposure risk assessment of nine metal elements in Chongqing hotpot seasoning. RSC Adv 10:1971–1980. https://doi.org/10.1039/c9ra10028h

    Article  CAS  Google Scholar 

  29. Zuo TT, Jin HY, Zhang L, et al (2020) Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data. Pharmacol Res 159 https://doi.org/10.1016/j.phrs.2020.104987

  30. Cao H, Qiao L, Zhang H, Chen J (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci Total Environ 408:2777–2784. https://doi.org/10.1016/j.scitotenv.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  31. Adusei-Mensah F, Essumang DK, Agjei RO et al (2019) Heavy metal content and health risk assessment of commonly patronized herbal medicinal preparations from the Kumasi metropolis of Ghana. J Environ Heal Sci Eng 17:609–618. https://doi.org/10.1007/s40201-019-00373-y

    Article  CAS  Google Scholar 

  32. Zuo TT, Li YL, He HZ et al (2019) Refined assessment of heavy metal-associated health risk due to the consumption of traditional animal medicines in humans. Environ Monit Assess 191:171. https://doi.org/10.1007/s10661-019-7270-1

    Article  CAS  PubMed  Google Scholar 

  33. Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751. https://doi.org/10.2337/diacare.27.11.2741

    Article  CAS  PubMed  Google Scholar 

  34. Bojórquez-quintal E, Escalante-magaña C, Echevarría-machado I, et al (2017) Aluminum , a Friend or Foe of Higher Plants in Acid Soils. 8:1–18. https://doi.org/10.3389/fpls.2017.01767

  35. Chung JY, Do YuS, Hong YS (2014) Environmental source of arsenic exposure. J Prev Med Public Heal 47:253–257. https://doi.org/10.3961/jpmph.14.036

    Article  Google Scholar 

  36. Cai K, Yu Y, Zhang M (2019) Kim K (2019) Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. Int J Environ Res Public Health 16(13):2269. https://doi.org/10.3390/ijerph16132269

    Article  CAS  PubMed Central  Google Scholar 

  37. Rehman M, Liu L, Wang Q et al (2019) Copper environmental toxicology, recent advances, and future outlook : a review. Environ Sci Pollut Res 26:18003–18016. https://doi.org/10.1007/s11356-019-05073-6

    Article  CAS  Google Scholar 

  38. Zhang L, Wong MH (2007) Environmental mercury contamination in China : sources and impacts. Environ Int 33(1):108–121. https://doi.org/10.1016/j.envint.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  39. Latif Mohammed Raouf A, Khalaf Hammud K, Kareem Zamil S, Latif Mohammed A (2014) Macro- and trace metals in three medicinal herbs collected from Baghdad, Iraq Market. Int J Pharma Sci Res 5:799–802 http://www.ijpsr.info/docs/IJPSR14-05-11-020

  40. Yu R, He L, Cai R et al (2017) Heavy metal pollution and health risk in China. Glob Heal J 1:47–55. https://doi.org/10.1016/s2414-6447(19)30059-4

    Article  Google Scholar 

  41. Cohen JE, Amon JJ (2012) Lead poisoning in China: a health and human rights crisis. Health Hum Rights 14(2):74–86

    PubMed  Google Scholar 

  42. Chen Z, Huang B, Hu W et al (2021) Ecological-health risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13679-y

    Article  Google Scholar 

  43. Hu B, Shao S, Ni H et al (2020) Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ Pollut 266:114961. https://doi.org/10.1016/j.envpol.2020.114961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of worker from the Lanzhou Institute for Food and Drug Control for their help during the experiments.

Funding

This work was supported by the National Key Research and Development Program of China (2018YFC1706300, 2018YFC17063003), the Key Project of the Fundamental Research Funds for the Central Universities (lzujbky-2020-sp13, lzujbky-2020-sp25), the Key Research and Development Project of Gansu Province (20YF2FA019), the People’s Livelihood Special Project from Technical Innovation Guide Plan of Gansu Province (20CX4FK014), and the Talent Innovation and Entrepreneurship Project of Lanzhou (2020-RC-41).

Author information

Authors and Affiliations

Authors

Contributions

Ruibin Bai: Conceptualization; Data curation; Methodology; Writing, original draft; Writing, review and editing. Yanping Wang: Investigation; Formal analysis; Writing, original draft. Yan Wang: Investigation; Resources. Yajie Zhang: Supervision; Resources. Jiabing Han: Methodology; Software. Jingzhou: Resources. Zixia Wang: Data curation. Fangdi Hu: Funding acquisition; Project administration; Resources; Formal analysis; Conceptualization; Writing, review and editing.

Corresponding author

Correspondence to Fangdi Hu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the final version of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, R., Wang, Y., Zhang, Y. et al. Analysis and Health Risk Assessment of Potentially Toxic Elements in Three Codonopsis Radix Varieties in China. Biol Trace Elem Res 200, 2475–2485 (2022). https://doi.org/10.1007/s12011-021-02806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02806-y

Keywords

Navigation