Skip to main content
Log in

Investigation of Protein Biomarkers and Oxidative Stress in Pinirampus pirinampu Exposed to Mercury Species from the Madeira River, Amazon-Brazil

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI–MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg−1) when compared to muscle tissue (60 ± 2.0 µg kg−1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg−1). The characterization of protein spots associated with mercury by ESI–MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and materials availability

All raw data will be made available on request.

Code Availability

Not applicable.

References

  1. Maniero MÁ, Wuilloud RG, Callegari EA et al (2020) Metalloproteomics analysis in human mammary cell lines treated with inorganic mercury. J Trace Elem Med Biol 58:126441. https://doi.org/10.1016/j.jtemb.2019.126441

    Article  CAS  PubMed  Google Scholar 

  2. Kahhat R, Parodi E, Larrea-Gallegos G et al (2019) Environmental impacts of the life cycle of alluvial gold mining in the Peruvian Amazon rainforest. Sci Total Environ 662:940–951. https://doi.org/10.1016/j.scitotenv.2019.01.246

    Article  CAS  PubMed  Google Scholar 

  3. Alcala-Orozco M, Caballero-Gallardo K, Olivero-Verbel J (2019) Mercury exposure assessment in indigenous communities from Tarapaca village, Cotuhe and Putumayo Rivers, Colombian Amazon. Environ Sci Pollut Res 26:36458–36467. https://doi.org/10.1007/s11356-019-06620-x

    Article  CAS  Google Scholar 

  4. Vieira JCS, de Oliveira G, Braga CP et al (2020) Parvalbumin and ubiquitin as potential biomarkers of mercury contamination of Amazonian Brazilian fish. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02026-w

    Article  PubMed  Google Scholar 

  5. Zheng N, Wang S, Dong W et al (2019) The toxicological effects of mercury exposure in marine fish. Bull Environ Contam Toxicol 102:714–720. https://doi.org/10.1007/s00128-019-02593-2

    Article  CAS  PubMed  Google Scholar 

  6. Le DQ, Tanaka K, Dung LV et al (2017) Biomagnification of total mercury in the mangrove lagoon foodweb in east coast of Peninsula, Malaysia. Regional Studies in Marine Science 16:49–55. https://doi.org/10.1016/j.rsma.2017.08.006

    Article  Google Scholar 

  7. Raihan SM, Moniruzzaman M, Park Y et al (2020) Evaluation of dietary organic and inorganic mercury threshold levels on induced mercury toxicity in a marine fish model. Animals 10:405. https://doi.org/10.3390/ani10030405

    Article  PubMed Central  Google Scholar 

  8. Passos CJS, Mergler D (2008) Human mercury exposure and adverse health effects in the Amazon: a review. Cad Saude Publica 24:s503–s520. https://doi.org/10.1590/S0102-311X2008001600004

    Article  PubMed  Google Scholar 

  9. Yang L, Zhang Y, Wang F et al (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586. https://doi.org/10.1016/j.chemosphere.2019.125586

    Article  CAS  PubMed  Google Scholar 

  10. Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28:895. https://doi.org/10.1897/08-151.1

    Article  CAS  PubMed  Google Scholar 

  11. Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269. https://doi.org/10.1080/10408440802233259

    Article  CAS  PubMed  Google Scholar 

  12. Sandheinrich MB, Miller KM (2006) Effects of dietary methylmercury on reproductive behavior of fathead minnows (Pimephales promelas). Environ Toxicol Chem 25:3053. https://doi.org/10.1897/05-641R.1

    Article  CAS  PubMed  Google Scholar 

  13. Batchelar KL, Kidd KA, Drevnick PE et al (2013) Evidence of impaired health in yellow perch (Perca flavescens ) from a biological mercury hotspot in northeastern north America. Environ Toxicol Chem 32:627–637. https://doi.org/10.1002/etc.2099

    Article  CAS  PubMed  Google Scholar 

  14. Ynalvez R, Gutierrez J, Gonzalez-Cantu H (2016) Mini-review: toxicity of mercury as a consequence of enzyme alteration. Biometals 29:781–788. https://doi.org/10.1007/s10534-016-9967-8

    Article  CAS  PubMed  Google Scholar 

  15. Vieira JCS, Cavecci B, Queiroz JV et al (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon Region of Brazil. Arch Environ Contam Toxicol 69:422–430. https://doi.org/10.1007/s00244-015-0160-9

    Article  CAS  PubMed  Google Scholar 

  16. Braga CP, Bittarello AC, Padilha CCF et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244. https://doi.org/10.1016/j.talanta.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  17. da Cunha Bataglioli I, Souza Vieira JC, Vitor de Queiroz J et al (2019) Physiological and functional aspects of metal-binding protein associated with mercury in the liver tissue of pirarucu (Arapaima gigas) from the Brazilian Amazon. Chemosphere 236:124320. https://doi.org/10.1016/j.chemosphere.2019.07.051

    Article  CAS  PubMed  Google Scholar 

  18. de Queiroz JV, Vieira JCS, de Oliveira G et al (2019) Identification of biomarkers of mercury contamination in Brachyplatystoma filamentosum of the Madeira River, Brazil, using metalloproteomic strategies. Biol Trace Elem Res 187:291–300. https://doi.org/10.1007/s12011-018-1363-5

    Article  CAS  PubMed  Google Scholar 

  19. Bittarello AC, Vieira JCS, Braga CP et al (2019) Characterization of molecular biomarkers of mercury exposure to muscle tissue of Plagioscion squamosissimus and Colossoma macropomum from the Amazon region. Food Chem 276:247–254. https://doi.org/10.1016/j.foodchem.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Cavecci-Mendonça B, de Souza C, Vieira J, Monteiro de Lima P et al (2020) Study of proteins with mercury in fish from the Amazon region. Food Chem 309:125460. https://doi.org/10.1016/j.foodchem.2019.125460

    Article  CAS  PubMed  Google Scholar 

  21. Queiroz LJ, Vilara-Torrente G, Ohara WM, Pires THS, Zuanon J, Doria CRC (2013) Peixes do Rio Madeira.

  22. Bittarello AC, Vieira JCS, Braga CP et al (2020) Metalloproteomic approach of mercury-binding proteins in liver and kidney tissues of Plagioscion squamosissimus (corvina) and Colossoma macropomum (tambaqui) from Amazon region: possible identification of mercury contamination biomarkers. Sci Total Environ 711:134547. https://doi.org/10.1016/j.scitotenv.2019.134547

    Article  CAS  PubMed  Google Scholar 

  23. Moraes PM, Santos FA, Cavecci B et al (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617. https://doi.org/10.1016/j.foodchem.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  24. Silva F, Padilha C, Pezzato L et al (2006) Determination of chromium by GFAAS in slurries of fish feces to estimate the apparent digestibility of nutrients in feed used in pisciculture. Talanta 69:1025–1030. https://doi.org/10.1016/j.talanta.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  25. Silva FA, Neves RCF, Quintero-Pinto LG et al (2007) Determination of selenium by GFAAS in slurries of fish feces to estimate the bioavailability of this micronutrient in feed used in pisciculture. Chemosphere 68:1542–1547. https://doi.org/10.1016/j.chemosphere.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Z-Y, Woollard ACS, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 26:853–856. https://doi.org/10.1007/BF02536169

    Article  CAS  PubMed  Google Scholar 

  27. Crouch RK, Gandy SE, Kimsey G et al (1981) The inhibition of islet superoxide dismutase by diabetogenic drugs. Diabetes 30:235–241. https://doi.org/10.2337/diab.30.3.235

    Article  CAS  PubMed  Google Scholar 

  28. Beutler E (1975) Red cell metabolism: a manual of biochemical a methods New York

  29. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: An application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84. https://doi.org/10.1016/S0141-1136(96)00103-1

    Article  CAS  Google Scholar 

  30. de Queiroz JV, Vieira JCS, da Cunha BI et al (2018) Total mercury determination in muscle and liver tissue samples from Brazilian Amazon fish using slurry sampling. Biol Trace Elem Res 184:517–522. https://doi.org/10.1007/s12011-017-1212-y

    Article  CAS  PubMed  Google Scholar 

  31. Doumas BT, Bayse DD, Borner K et al (1981) A candidate reference method for determination of total protein in serum II. Test for transferability Clinical Chemistry 271027:1651–1654

    Article  Google Scholar 

  32. Vieira JCS, Braga CP, de Oliveira G et al (2018) Correction to: Mercury exposure: protein biomarkers of mercury exposure in Jaraqui Fish from the Amazon Region. Biol Trace Elem Res 183:172. https://doi.org/10.1007/s12011-017-1195-8

    Article  CAS  PubMed  Google Scholar 

  33. Lima PM, Neves RDCF, dos Santos F, a, et al (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: Preliminary results. Talanta 82:1052–1056. https://doi.org/10.1016/j.talanta.2010.06.023

    Article  CAS  PubMed  Google Scholar 

  34. Shevchenko A, Tomas H, Havliš J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  Google Scholar 

  35. Uniprot (2019) Uniprot.org.br. 2019 1.

  36. Home | BioBam | Bioinformatics Made Easy. https://www.biobam.com/. Accessed 20 Apr 2020

  37. de Queiroz JV, Cavecci-Mendonça B, Vieira JCS et al (2021) Metalloproteomic strategies for identifying proteins as biomarkers of mercury exposure in Serrasalmus rhombeus from the Amazon Region. Biol Trace Elem Res 199:712–720. https://doi.org/10.1007/s12011-020-02178-9

    Article  PubMed  Google Scholar 

  38. Marinho JS, Lima MO, de Santos EC, O, et al (2014) Mercury speciation in hair of children in three communities of the Amazon, Brazil. Biomed Res Int 2014:1–9. https://doi.org/10.1155/2014/945963

    Article  CAS  Google Scholar 

  39. Rodríguez Martín-Doimeadios RC, Berzas Nevado JJ, Guzmán Bernardo FJ et al (2014) Comparative study of mercury speciation in commercial fishes of the Brazilian Amazon. Environ Sci Pollut Res 21:7466–7479. https://doi.org/10.1007/s11356-014-2680-7

    Article  CAS  Google Scholar 

  40. Souza-Araujo J, Giarrizzo T, Lima MO, Souza MBG (2016) Mercury and methyl mercury in fishes from Bacajá River (Brazilian Amazon): evidence for bioaccumulation and biomagnification. J Fish Biol 89:249–263. https://doi.org/10.1111/jfb.13027

    Article  CAS  PubMed  Google Scholar 

  41. Cerbino MR, Vieira JCS, Braga CP et al (2017) Metalloproteomics approach to analyze mercury in breast milk and hair samples of lactating women in communities of the Amazon Basin Brazil Biological Trace Element Research 1–11 https://doi.org/10.1007/s12011-017-1057-4

  42. dos Santos FA, Cavecci B, Vieira JCS et al (2015) A metalloproteomics study on the association of mercury with breast milk in samples from lactating women in the Amazon Region of Brazil. Arch Environ Contam Toxicol 69:223–229. https://doi.org/10.1007/s00244-015-0161-8

    Article  CAS  PubMed  Google Scholar 

  43. Kumar A, Khushboo PR, Sharma B (2020) Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol Trace Elem Res 196:654–661. https://doi.org/10.1007/s12011-019-01957-3

    Article  CAS  PubMed  Google Scholar 

  44. Ibrahim ATA, Banaee M, Sureda A (2019) Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comp Biochem Physiol C: Toxicol Pharmacol 225:108583. https://doi.org/10.1016/j.cbpc.2019.108583

    Article  CAS  Google Scholar 

  45. Grotto D, Vicentini J, Friedmann Angeli JP et al (2011) Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicol Environ Saf 74:487–493. https://doi.org/10.1016/j.ecoenv.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  46. Brandão F, Cappello T, Raimundo J et al (2015) Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress. Metallomics 7:1352–1363. https://doi.org/10.1039/C5MT00090D

    Article  CAS  PubMed  Google Scholar 

  47. www.uniprot (2021) tpi1a - Triosephosphate isomerase A - Danio rerio (Zebrafish) - tpi1a gene & protein. 1.

  48. Uniprot.org/uniprot (2021) ak2 - Adenylate kinase 2, mitochondrial - Danio rerio (Zebrafish) - ak2 gene & protein. 1.

  49. Burkart A, Shi X, Chouinard M, Corvera S (2011) Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem 286:4081–4089. https://doi.org/10.1074/jbc.M110.134106

    Article  CAS  PubMed  Google Scholar 

  50. Klepinin A, Zhang S, Klepinina L, et al (2020) Adenylate kinase and metabolic signaling in cancer cells. frontiers in oncology. doi: https://doi.org/10.3389/fonc.2020.00660

  51. Rissone A, Weinacht KG, la Marca G et al (2015) Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. J Exp Med 212:1185–1202. https://doi.org/10.1084/jem.20141286

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uniprot.org (2021) gapdh - Glyceraldehyde-3-phosphate dehydrogenase - Danio rerio (Zebrafish) - gapdh gene & protein. https://www.uniprot.org/uniprot/Q5XJ10. Accessed 18 Mar 2021

  53. Wassarman PM, Watson HC, Major JP (1969) Reaction of the sulphydryl groups of lobster-muscle glyceraldehyde-3-phosphate dehydrogenase with organic mercurials. BBA - Enzymology 191:1–9. https://doi.org/10.1016/0005-2744(69)90309-X

    Article  CAS  Google Scholar 

  54. BioBam Bioinformatics (2019) OmicsBox – Bioinformatics Made Easy. March 3, 2019.

  55. www.blast2go.com (2017) Blast2GO - Functional Annotation and Genomics. 2017 1.

  56. Dufault R, Schnoll R, Lukiw WJ et al (2009) Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children. Behav Brain Funct 5:44. https://doi.org/10.1186/1744-9081-5-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the Brazilian research-funding agency: National Electric Energy Agency-ANEEL/Sustainable Energy of Brazil-ESBR – P&D: 6631–0001/2012/Contract Jirau 004/2013, São Paulo Research Foundation-FAPESP, Processes: 2016/19404–2 and 2014/02668–1), National Council for Scientific and Technological Development–CNPq, Processes: 404485/2016–2, 303719/2014–1 and 30478/2018–9) and CAPES-Print AUXPE-Process: 88881.3107432018–01 for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: José Cavalcante Souza Vieira, Camila Pereira Braga and Pedro de Magalhaes Padilha; Methodology: José Cavalcante Souza Vieira, Grasieli de Oliveira, Camila Pereira Braga, Nubya Gonçalves Cavallini, Luiz Fabrício Zara, Marília Afonso Rabelo Buzalaf, Pedro de Magalhães Padilha; Formal analysis and investigation: José Cavalcante Souza Vieira, Grasieli de Oliveira, Pedro Magalhãe Padilha; Writing—original draft preparation: José Cavalcante Souza Vieira, Grasieli de Oliveira, Nubya Gonçalves Cavallini; Writing—review and editing: Pedro de Magalhães padilha, Camila Pereira Braga, Jiri Adamec; Funding acquisition: Pedro de Magalhães Padilha, José Cavalcante Souza Vieira; Resources: Pedro de Magalhães Padilha, José Cavalcante Souza Vieira; Supervision: Pedro de Magalhães Padilha.

Corresponding authors

Correspondence to José Cavalcante Souza Vieira or Pedro de Magalhães Padilha.

Ethics declarations

Ethics approval

The protocols used in this study were approved by the Experimental Animal Ethics Committee at São Paulo State University (UNESP), Botucatu, São Paulo, under protocol CEUA n° 186/2017.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.C.S., de Oliveira, G., Cavallini, N.G. et al. Investigation of Protein Biomarkers and Oxidative Stress in Pinirampus pirinampu Exposed to Mercury Species from the Madeira River, Amazon-Brazil. Biol Trace Elem Res 200, 1872–1882 (2022). https://doi.org/10.1007/s12011-021-02805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02805-z

Keywords

Navigation