Skip to main content
Log in

Experimental and Molecular Docking Studies on the Interaction of a Water-Soluble Pd(II) Complex Containing β-Amino Alcohol with Calf Thymus DNA

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction of water-soluble and fluorescent [Pd (HEAC) Cl2] complex, in which HEAC is 2-((2-((2-hydroxyethyl)amino)ethyl)amino) cyclohexanol, with calf thymus DNA (ct-DNA) has been studied. This study was performed using electronic absorption and fluorescence emission spectroscopies, cyclic voltammetry and circular dichroism analyses, dynamic viscosity measurements, and molecular docking theory. From hypochromic effect observed in ct-DNA absorption spectra, it was found that the Pd(II) complex could form a conjugate with ct-DNA strands through the groove binding mode. The Kb values obtained from fluorescence measurements clearly assert the Pd(II) complex affinity to ct-DNA. The fluorescence quenching of the DNA-Hoechst compound following the successive additions of the Pd(II) complex to the solution revealed that the Pd(II) complex is located in the ct-DNA grooves, and Hoechst molecules have been released into solution; moreover, the resulting measurements from relative viscosity authenticate the Pd(II) complex binding to the grooves. Negative quantities of thermodynamic parameters imply that the Pd(II) complex binds to ct-DNA mainly by the hydrogen bonds and van der Waals forces; also, the Gibbs-free energy changes show the exothermic and spontaneous formation of the Pd(II) complex-DNA system. The electrochemical behavior of the Pd(II) complex in the attendance of ct-DNA was investigated using the cyclic voltammetry method (CV). Several quasi-reversible redox waves were observed along with increasing the anodic/cathodic peak currents, as well as a shift in anodic/cathodic peak potentials. Circular dichroism (CD) observations suggested that the Pd(II)-DNA interaction could alter ct-DNA conformation. The results of molecular modeling confirmed that groove mechanism is followed by the Pd(II) complex to interact with ct-DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data are available in the manuscript.

References

  1. Patel NJ, Bhatt BS, Patel MN (2019) Heteroleptic N, N-donor pyrazole based Pt(II) and Pd(II) complexes: DNA binding, molecular docking and cytotoxicity studies. Inorg Chim Acta 498:119130. https://doi.org/10.1016/j.ica.2019.119130

    Article  CAS  Google Scholar 

  2. Ahmad I (2020) Transition metal complexes as proteasome inhibitors for cancer treatment. Inorg Chim Acta 506:119521. https://doi.org/10.1016/j.ica.2020.119521

    Article  CAS  Google Scholar 

  3. Aminzadeh M, Saeidifar M, Mansouri-Torshizi H (2020) Synthesis, characterization, DNA binding, cytotoxicity, and molecular docking approaches of Pd(II) complex with N, O-donor ligands as a novel potent anticancer agent. J Mol Struct 1215:128212. https://doi.org/10.1016/j.molstruc.2020.128212

    Article  CAS  Google Scholar 

  4. Wei X, Yang Y, Ge J, Lin X, Liu D, Wang S, Zhang J, Zhou G, Li S (2020) Synthesis, characterization, DNA/BSA interactions and in vitro cytotoxicity study of palladium(II) complexes of hispolon derivatives. J Inorg Biochem 202:110857. https://doi.org/10.1016/j.jinorgbio.2019.110857

    Article  CAS  PubMed  Google Scholar 

  5. Ayyannan G, Veerasamy P, Mohanraj M, Raja G, Manimaran A, Velusamy M, Bhuvanesh N, Nandhakumar R, Jayabalakrishnan C (2017) Biological evaluation of organometallic palladium(II) complexes containing 4-hydroxybenzoic acid (3-ethoxy-2-hydroxybenzylidene) hydrazide: Synthesis, structure, DNA/protein binding, antioxidant activity and cytotoxicity. Appl Organomet Chem 31:e3599. https://doi.org/10.1002/aoc.3599

    Article  CAS  Google Scholar 

  6. Zianna A, Geromichalos GD, Hatzidimitriou AG, Coutouli-Argyropoulou E, Lalia-Kantouri M, Psomas G (2019) Palladium(II) complexes with salicylaldehyde ligands: Synthesis, characterization, structure, in vitro and in silico study of the interaction with calf-thymus DNA and albumins. J Inorg Biochem 194:85–96. https://doi.org/10.1016/j.jinorgbio.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Karami K, Rafiee M, Lighvan ZM, Zakariazadeh M, Faal AY, Esmaeili SA, Momtazi-Borojeni AA (2018) Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking. J Mol Struct 1154:480–495. https://doi.org/10.1016/j.molstruc.2017.10.059

    Article  CAS  Google Scholar 

  8. Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C (2019) Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 24(4):1044–1058. https://doi.org/10.1016/j.drudis.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  9. Scattolin T, Bortolamiol E, Visentin F, Palazzolo S, Caligiuri I, Perin T, Canzonieri V, Demitri N, Rizzolio F, Togni A (2020) Palladium(II)-η3-Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids. Chem Eur J 26(51):11868–11876. https://doi.org/10.1002/chem.202002199

    Article  CAS  PubMed  Google Scholar 

  10. Scattolin T, Nolan SP (2019) Improved Synthesis, Anticancer Activity and Electrochemical Characterization of Unusual Zwitterionic Palladium Compounds with a Ten-Term Coordinative Ring. ChemistrySelect 4(36):10911–10919. https://doi.org/10.1016/j.trechm.2020.06.001

    Article  CAS  Google Scholar 

  11. Alinaghi M, Karami K, Shahpiri A, Nasab AK, Momtazi-Borojeni AA, Abdollahi E, Lipkowski J (2020) A Pd(II) complex derived from pyridine-2-carbaldehyde oxime ligand: Synthesis, characterization, DNA and BSA interaction studies and in vitro anticancer activity. J Mol Struct 1219:128479. https://doi.org/10.1016/j.molstruc.2020.128479

    Article  CAS  Google Scholar 

  12. Chellan P, Stringer T, Shokar A, Au A, Tam C, Cheng LW, Smith GS, Land KM (2019) Antiprotozoal activity of palladium(II) salicylaldiminato thiosemicarbazone complexes on metronidazole resistant Trichomonas vaginalis. Inorg Chem Commun 102:1–4. https://doi.org/10.1016/j.inoche.2019.01.033

    Article  CAS  Google Scholar 

  13. Akcha S, Gómez-Ruiz S, Kellou-Tairi S, Lezama L, Pérez FB, Benali-Baitich O (2018) Synthesis, characterization, solution equilibria, DFT study, DNA binding affinity and cytotoxic properties of a cobalt(II) complex with a 5-pyrazolone ligand. Inorg Chim Acta 482:738–748. https://doi.org/10.1016/j.ica.2018.06.051

    Article  CAS  Google Scholar 

  14. Hakor KP, Lunagariya MV, Bhatt BS, Patel MN (2019) Fluorescence and absorption studies of DNA–Pd (II) complex interaction: Synthesis, spectroanalytical investigations and biological activities. Luminescence 34:113–124. https://doi.org/10.1002/bio.3587

    Article  CAS  Google Scholar 

  15. Mardani Z, Kazemshoar-Duzduzani R, Moeini K, Hajabbas-Farshchi A, Carpenter-Warren C, Slawin AMZ, Woollins JD (2018) Anticancer activities of a β-amino alcohol ligand and nanoparticles of its copper(II) and zinc(II) complexes evaluated by experimental and theoretical methods. RSC Adv 8(50):28810–28824. https://doi.org/10.1039/C8RA04578J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahendran P, Jeya Rajendran A, Balachandran C, Stalin A, Rangan S, Kothandapani L, Chennakesava Rao K, Awale S, Hiteshkumar BN (2018) Synthesis of novel β-amino alcohols from phenylacetylcarbinol: cytotoxicity activity against A549 cells and molecular docking. Res Chem Intermed 44(1):535–552. https://doi.org/10.1007/s11164-017-3118-x

    Article  CAS  Google Scholar 

  17. Bai B, Li XY, Li Y, Zhu HJ (2011) Design, synthesis and cytotoxic activities of novel β-amino alcohol derivatives. Bioorg Med Chem Lett 21(8):2302–2304. https://doi.org/10.1016/j.bmcl.2011.02.087

    Article  CAS  PubMed  Google Scholar 

  18. Sujayev A, Taslimi P, Garibov E, Karaman M, Zangeneh MM (2020) Novel cyclic thiourea derivatives of aminoalcohols at the presence of AlCl3 catalyst as potent α-glycosidase and α-amylase inhibitors: Synthesis, characterization, bioactivity investigation and molecular docking studies. Bioorg Chem 104:104216. https://doi.org/10.1016/j.bioorg.2020.104216

    Article  CAS  PubMed  Google Scholar 

  19. Manda BR, Prasad AN, Thatikonda NR et al (2018) Synthesis, Antibacterial and Antitubercular Evaluation of Cardanol and Glycerol-Based β-Amino Alcohol Derivatives. J Braz Chem Soc 29:639–648. https://doi.org/10.21577/0103-5053.20170178

    Article  CAS  Google Scholar 

  20. Shi C, Ren C, Zhang E, Jin H, Yu X, Wang S (2016) Synthesis of β-amino alcohols using the tandem reduction and ring-opening reaction of nitroarenes and epoxides. Tetrahedron 72:3839–3843. https://doi.org/10.1016/j.tet.2016.04.083

    Article  CAS  Google Scholar 

  21. Hakimi M, Mardani Z, Moeini K, Mohr F, Fernandes MA (2014) Palladium, cadmium and mercury complexes of 2-((2-((2-hydroxyethyl) amino) ethyl) amino) cyclohexanol: Synthesis, structural, spectral and solution studies. Polyhedron 67:27–35. https://doi.org/10.1016/j.poly.2013.08.065

    Article  CAS  Google Scholar 

  22. Shahabadi N, Hakimi M, Morovati T, Hadidi S, Moeini K (2017) Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper (ii) complex with bovine serum albumin. Luminescence 32:43–50. https://doi.org/10.1002/bio.3146

    Article  CAS  PubMed  Google Scholar 

  23. Shahabadi N, Moeini N (2015) Synthesis, characterization and DNA interaction studies of a new platinum (II) complex containing caffeine and histidine ligands using instrumental and computational methods. J Coord Chem 68:2871–2885. https://doi.org/10.1080/00958972.2015.1055259

    Article  CAS  Google Scholar 

  24. Shahabadi N, Hadidi S, Ghasemian Z, Taherpour AA (2015) Racemic R, S-venlafaxine hydrochloride–DNA interaction: Experimental and computational evidence. Spectrochim Acta A Mol Biomol Spectrosc 145:540–552. https://doi.org/10.1016/j.saa.2015.03.073

    Article  CAS  PubMed  Google Scholar 

  25. Shahabadi N, Hashempour S, Taherpour A, Mohsenzadeh F (2018) Synthesis, characterization, HSA interaction, and antibacterial activity of a new water-soluble Pt (II) complex containing the drug cephalexin. J Coord Chem 71:3708–3730. https://doi.org/10.1080/00958972.2018.1525488

    Article  CAS  Google Scholar 

  26. Shahraki S, Heydari A (2018) Binding forces between a novel Schiff base palladium (II) complex and two carrier proteins: human serum albumi and β-lactoglobulin. J Biomol Struct Dyn 36:2807–2821. https://doi.org/10.1080/07391102.2017.1367723

    Article  CAS  PubMed  Google Scholar 

  27. Shahabadi N, Akbari A, Jamshidbeigi M, Fili SM (2017) Interaction studies of copper complex containing food additive carmoisine dye with human serum albumin (HSA): Spectroscopic investigations. Luminescence 32:1319–1327. https://doi.org/10.1002/bio.3328

    Article  CAS  PubMed  Google Scholar 

  28. Shahabadi N, Akhtarshenas S, Hadidi S (2019) Synthesis, characterization and DNA interaction studies of new copper complex containing pseudoephedrine hydrochloride drug. Nucleosides Nucleotides Nucleic Acids 38:680–699. https://doi.org/10.1080/15257770.2019.1599909

    Article  CAS  PubMed  Google Scholar 

  29. Chaurasia M, Tomar D, Chandra S (2019) Synthesis, spectral characterization, and DNA binding studies of Co (II), Ni (II), Cu (II) and Zn (II) complexes of Schiff base 2-((1H-1, 2, 4-triazol-3-ylimino) methyl)-5-methoxyphenol. J Mol Struct 1179:431–442. https://doi.org/10.1016/j.molstruc.2018.11.027

    Article  CAS  Google Scholar 

  30. Shahabadi N, Shiri F, Hadidi S, Farshadfar K, Sajadimajd S, Roe SM (2020) Equilibrium and site selective analysis for DNA threading intercalation of a new phosphine copper(I) complex: Insights from X-ray analysis, spectroscopic and molecular modeling studies. Spectrochim Acta A Mol Biomol Spectrosc 118280:118280. https://doi.org/10.1016/j.saa.2020.118280

    Article  CAS  Google Scholar 

  31. Asadi Z, Mandegani Z, Asadi M, Pakiari AH, Salarhaji M, Manassir M, Karbalaei-Heidari HR, Rastegari B, Sedaghat M (2019) Substituted effect on some water-soluble Mn (II) salen complexes: DNA binding, cytotoxicity, molecular docking, DFT studies and theoretical IR & UV studies. Spectrochim Acta A Mol Biomol Spectrosc 206:278–294. https://doi.org/10.1016/j.saa.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  32. Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Aramesh N, Asadpour S, Noroozifar M (2020) Experimental and theoretical investigations of Dy (III) complex with 2, 2′-bipyridine ligand: DNA and BSA interactions and antimicrobial activity study. J Biomol Struct Dyn 38:4746–4763. https://doi.org/10.1080/07391102.2019.1689170

    Article  CAS  PubMed  Google Scholar 

  33. Shahabadi N, Amiri S, Zhaleh H (2020) Spectrophotometric and physicochemical studies on the interaction of a new platinum (IV) complex containing the drug pregabalin with calf thymus DNA. J Coord Chem 73:35–51. https://doi.org/10.1080/00958972.2019.1710743

    Article  CAS  Google Scholar 

  34. Alisufi N, Mansouri-Torshizi H (2020) Preparation, characterization, DNA/BSA interaction and computational binding analyses of a dinuclear, biopotency Pd+ 2 coordinated with 1, 4-phenylenediamine and ethylenediamine as ligands. J Iran Chem Soc 18:11471166. https://doi.org/10.1007/s13738-020-02098-4

    Article  CAS  Google Scholar 

  35. Sarwar T, Ishqi HM, Rehman SU, Husain MA, Rahman Y, Tabish M (2017) Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study. Int J Biol Macromol 98:319–328. https://doi.org/10.1016/j.ijbiomac.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  36. Shahabadi N, Mahdavi M, Taherpour A(A), Ghasemhezaveh F (2017) Synthesis, characterization and in vitro DNA binding studies of a new copper(II) complex containing antioxidant ferulic acid. J Coord Chem 70(15):2589–2605. https://doi.org/10.1080/00958972.2017.1363890

    Article  CAS  Google Scholar 

  37. Gholivand MB, Shamsipur M, Ehzari H (2019) Cetirizine dihydrochloride sensor based on nano composite chitosan, MWCNTs and ionic liquid. Microchem J 146:692–700. https://doi.org/10.1016/j.microc.2019.01.068

    Article  CAS  Google Scholar 

  38. Shahabadi N, Abbasi AR, Moshtkob A, Hadidi S (2019) Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. J Biomol Struct Dyn 38:1–12. https://doi.org/10.1080/07391102.2019.1658643

    Article  CAS  Google Scholar 

  39. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci 78:2179–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu N, Xu Z (2019) Using LeDock as a docking tool for computational drug design. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing

  41. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jana S et al (2020) Synthesis, characterization, X-ray structure and DNA binding study of palladium(II) complex with new thioether containing ONS donor ligand. J Chem Sci 132(1):1–9. https://doi.org/10.1007/s12039-020-01763-8

    Article  CAS  Google Scholar 

  43. Karami K, Lighvan ZM, Barzani SA, Faal AY, Poshteh-Shirani M, Khayamian T, Eigner V, Dušek M (2015) Design and synthesis of a novel trinuclear palladium(II) complex containing an oxime chelate ligand: Determining the interaction mechanism with the DNA groove and BSA site I by spectroscopic and molecular dynamics simulation approaches. New J Chem 39(11):8708–8719. https://doi.org/10.1039/C5NJ01280E

    Article  CAS  Google Scholar 

  44. Karami K, Alinaghi M, Amirghofran Z, Lipkowski J (2018) Synthesis and characterization of two new trans palladium(II) complexes containing benzylamine ligand: DNA/BSA interactions, molecular docking and in vitro cytotoxic activity. Inorg Chim Acta 471:797–807. https://doi.org/10.1016/j.ica.2017.02.027

    Article  CAS  Google Scholar 

  45. Mansouri-Torshizi H, Zareian-Jahromi S, Abdi K, Saeidifar M (2019) Nonionic but water soluble,[Glycine-Pd-Alanine] and [Glycine-Pd-Valine] complexes. Their synthesis, characterization, antitumor activities and rich DNA/HSA interaction studies. J Biomol Struct Dyn 37(13):3566–3582. https://doi.org/10.1080/07391102.2018.1520647

    Article  CAS  PubMed  Google Scholar 

  46. Sharifinia S, Hajibabaei F, Salehzadeh S, Hosseinpour Moghadam N, Khazalpour S (2020) Probing the Strength and Mechanism of Binding Between Amifampridine and Calf Thymus DNA. DNA Cell Biol 39(12):2134–2142. https://doi.org/10.1089/dna.2020.5618

    Article  CAS  Google Scholar 

  47. Onar G, Gürses C, Karataş MO, Balcıoğlu S, Akbay N, Özdemir N, Ateş B, Alıcı B (2019) Palladium(II) and ruthenium(II) complexes of benzotriazole functionalized N-heterocyclic carbenes: Cytotoxicity, antimicrobial, and DNA interaction studies. J Organomet Chem 886:48–56. https://doi.org/10.1016/j.jorganchem.2019.02.013

    Article  CAS  Google Scholar 

  48. Ali MS, Farah MA, al-Lohedan HA, al-Anazi KM (2018) Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: a multi spectroscopic and molecular modelling study. RSC Adv 8(17):9083–9093. https://doi.org/10.1039/C7RA13647A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shahabadi N, Hashempour S (2019) DNA binding studies of antibiotic drug cephalexin using spectroscopic and molecular docking techniques. Nucleosides Nucleotides Nucleic Acids 38(6):428–447. https://doi.org/10.1080/15257770.2018.1562071

    Article  CAS  PubMed  Google Scholar 

  50. Shahabadi N, Fatahi S, Maghsudi M (2018) Synthesis of a new Pt(II) complex containing valganciclovir drug and calf-thymus DNA interaction study using multispectroscopic methods. J Coord Chem 71:258–270. https://doi.org/10.1080/00958972.2018.1433828

    Article  CAS  Google Scholar 

  51. Alinaghi M, Karami K, Shahpiri A, Momtazi-borojeni AA, Abdollahi E, Lipkowski J (2020) A Pd(II) complex derived from pyridine-2-carbaldehyde oxime ligand: Synthesis, characterization, DNA and BSA interaction studies and in vitro anticancer activity. J Mol Struct 1219:128479. https://doi.org/10.1016/j.molstruc.2020.128479

    Article  CAS  Google Scholar 

  52. Tabassum S (2009) Synthesis of new piperazine derived Cu(II)/Zn(II) metal complexes, their DNA binding studies, electrochemistry and anti-microbial activity: Validation for specific recognition of Zn(II) complex to DNA helix by interaction with thymine base. Spectrochim Acta A Mol Biomol Spectrosc 72:1026–1033. https://doi.org/10.1016/j.saa.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  53. Shahabadi N, Zendehcheshm S, Momeni BZ, Abbasi R (2020) Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2 (bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. J Coord Chem 73(8):1349–1376. https://doi.org/10.1080/00958972.2020.1775821

    Article  CAS  Google Scholar 

  54. Khandar AA, Mirzaei-Kalar Z, Shahabadi N, Hadidi S, Abolhasani H, Hosseini-Yazdi SA, Jouyban A (2020) Antimicrobial, cytotoxicity, molecular modeling and DNA cleavage/binding studies of zinc-naproxen complex: switching DNA binding mode of naproxen by coordination to zinc ion. J Biomol Struct Dyn:1–13. https://doi.org/10.1080/07391102.2020.1854858

  55. Maiti SK, Kalita M, Singh A, Deka J, Barman P (2020) Investigation of DNA binding and bioactivities of thioether containing Schiff base Copper(II), Cobalt(II) and Palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron 184:114559. https://doi.org/10.1016/j.poly.2020.114559

    Article  CAS  Google Scholar 

  56. Shahabadi N, Mahdavi M, Momeni BZ (2020) Multispectroscopic analysis, atomic force microscopy, molecular docking and molecular dynamic simulation studies of the interaction between [SnMe2Cl2 (Me2phen)] complex and ct-DNA in the presence of glucose. J Biomol Struct Dyn:1–15. https://doi.org/10.1080/07391102.2020.1784793

  57. Afrin S, Rahman Y, Sarwar T, Husain MA, Ali A, Shamsuzzaman, Tabish M (2017) Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochim Acta A Mol Biomol Spectrosc 186:66–75. https://doi.org/10.1016/j.saa.2017.05.073

    Article  CAS  PubMed  Google Scholar 

  58. Shahabadi N, Kashanian S, Darabi F (2009) In vitro study of DNA interaction with a water-soluble dinitrogen Schiff base. DNA Cell Biol 28(11):589–596. https://doi.org/10.1089/dna.2009.0881

    Article  CAS  PubMed  Google Scholar 

  59. Rashid N, Kiran A, Ahmad I, Ashraf Z, Mohd. Yamin B, Rafiq M (2020) Synthesis, DFT, electrochemical, biological and DNA-interaction studies of a novel copper(II) complex of salicylic acid and N-tosyl substituted benzimidazole. J Coord Chem 73(1):52–66. https://doi.org/10.1080/00958972.2020.1714602

    Article  CAS  Google Scholar 

  60. Li N, Ma Y, Yang C, Guo L, Yang X (2005) Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys Chem 116(3):199–205. https://doi.org/10.1016/j.bpc.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  61. Shahabadi N, Razlansari M (2020) Synthesis, characterization and in vitro cytotoxicity studies of novel Cu (II) complex containing zonisamide drug: DNA interaction by multi spectroscopic and molecular docking methods. J Biomol Struct Dyn:1–15. https://doi.org/10.1080/07391102.2020.1861979

  62. Shahabadi N, Moradi Fili S, Shahlaei M (2015) Synthesis, characterization and comparative DNA interaction studies of new copper(II) and nickel(II) complexes containing mesalamine drug using molecular modeling and multispectroscopic methods. J Coord Chem 68(20):3667–3684. https://doi.org/10.1080/00958972.2015.1078897

    Article  CAS  Google Scholar 

  63. Kou SB, Lou YY, Zhou KL, Wang BL, Lin ZY, Shi JH (2019) In vitro exploration of interaction behavior between calf thymus DNA and fenhexamid with the help of multi-spectroscopic methods and molecular dynamics simulations. J Mol Liq 296:112067. https://doi.org/10.1016/j.molliq.2019.112067

    Article  CAS  Google Scholar 

  64. Shahabadi N, Razlansari M (2021) Insight into the binding mechanism of macrolide antibiotic; erythromycin to calf thymus DNA by multispectroscopic and computational approaches. J Biomol Struct Dyn:1–12. https://doi.org/10.1080/07391102.2021.1877821

  65. Shiri F, Hadidi S, Rahimi-Nasrabadi M, Ahmadi F, Ganjali MR, Ehrlich H (2019) Synthesis, characterization and DNA binding studies of a new ibuprofen–platinum(II) complex. J Biomol Struct Dyn 38:11191129. https://doi.org/10.1080/07391102.2019.1597769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Iran National Science Foundation (INSF) and Razi University Research Center.

Funding

This study was supported financially by the Iran National Science Foundation (INSF) and Razi University Research Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors contributed to the manuscript. Nahid Shahabadi wrote the first draft of the manuscript. Lida Ghaffari contributed to experiments, Zahra Mardani contributed to characterization of the complex and Farshad Shiri contributed to the computational study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nahid Shahabadi.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabadi, N., Ghaffari, L., Mardani, Z. et al. Experimental and Molecular Docking Studies on the Interaction of a Water-Soluble Pd(II) Complex Containing β-Amino Alcohol with Calf Thymus DNA. Biol Trace Elem Res 200, 1988–2000 (2022). https://doi.org/10.1007/s12011-021-02803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02803-1

Keywords

Navigation