Skip to main content
Log in

Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Royal jelly (RJ) and selenium (Se)–rich foods have well-known health benefits which are attributable to a broad range of pharmacologic effects including antioxidant, bacteriostatic, anticancer, and immunoregulatory activities. However, there was no study to combine Se with RJ. Here, Se-rich RJ (SRJ) was produced by feeding sodium selenite to honeybees (Apis mellifera). To further clarify the function of SRJ, mice were then fed RJ or SRJ for 30 days, and their antioxidant capacity and gut microbiota profile were analyzed. The results showed that SRJ treatment could more effectively increase glutathione peroxidase levels in the liver and kidney, as well as total antioxidant activity in the liver and superoxide dismutase level in the kidney. Additionally, the ratio of Firmicutes/Bacteroidetes and relative abundance of the Lachnospiraceae and Prevotellaceae families were increased, whereas the abundance of Helicobacterceae was decreased in mice treated with SRJ. At the genus level, SRJ increased the relative abundance of Lachnospiraceae NK4A136 group, Prevotellaceae UCG 001, Rikenellaceae RC9 gut group, and Oscillibacter and decreased that of Alistipes. And the functional prediction of gut microbiota indicated SRJ treatment could enhance the amino acid metabolism. Correlation analysis indicated that SRJ could optimize the functional network of gut microbiota and the interactions between the gut microbiota and the host. These results suggested the SRJ had potential therapeutic applications in the improvement of overall health or treatment of diseases related to oxidative stress or dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fardet A, Rock E (2014) Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations. Advances in nutrition (Bethesda, Md) 5:430–446. https://doi.org/10.3945/an.114.006122

    Article  CAS  Google Scholar 

  2. Pyrzanowska J, Wawer A, Joniec-Maciejak I, Piechal A, Blecharz-Klin K, Graikoub K, Chinoub I, Widy-Tyszkiewicz E (2018) Long-term administration of Greek Royal Jelly decreases GABA concentration in the striatum and hypothalamus of naturally aged Wistar male rats. Neurosci Lett 675:17–22

    Article  CAS  PubMed  Google Scholar 

  3. Kunugi MA (2019) Royal jelly and its components promote healthy aging and longevity: from animal models to humans. Int J Mol Sci 20(19):4662. https://doi.org/10.3390/ijms20194662

    Article  CAS  PubMed Central  Google Scholar 

  4. Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules (Basel, Switzerland) 19:13541–13563. https://doi.org/10.3390/molecules190913541

    Article  CAS  Google Scholar 

  5. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:0–593. https://doi.org/10.1016/j.tplants.2005.10.001

    Article  CAS  Google Scholar 

  6. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790(11):1415–1423. https://doi.org/10.1016/j.bbagen.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Hladun KR, Kaftanoglu O, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.). Environ Toxicol Chem 32(11):2584–2592. https://doi.org/10.1002/etc.2357

    Article  CAS  PubMed  Google Scholar 

  8. Rayman MP (2000) The importance of selenium to human health. Lancet (London, England) 356:233–241. https://doi.org/10.1016/s0140-6736(00)02490-9

    Article  CAS  Google Scholar 

  9. Chi X, Wei W, Zhang W, Liu Z, Wang H, Xu B (2019) Sodium selenium enhances the antioxidative activities and immune functions of Apis mellifera (Hymenoptera: Apidae) and increases the selenium content in royal jelly. Environ Entomol 49:169–177. https://doi.org/10.1093/ee/nvz131

    Article  CAS  Google Scholar 

  10. Cao LF, Zheng HQ, Pirk CW, Hu FL, Xu ZW (2016) High royal jelly-producing honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China. J Econ Entomol 109:510–514. https://doi.org/10.1093/jee/tow013

    Article  CAS  PubMed  Google Scholar 

  11. Chi X, Liu Z, Wang Y, Wei W, Xu B (2021) Royal jelly enhanced the antioxidant activities and modulated the gut microbiota in healthy mice. J Food Biochem 45(5):e13701. https://doi.org/10.1111/jfbc.13701

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics (Oxford, England) 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287

    Article  CAS  Google Scholar 

  15. Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92:557–573. https://doi.org/10.1079/bjn20041251

    Article  CAS  PubMed  Google Scholar 

  16. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268. https://doi.org/10.1017/s0007114508939830

    Article  CAS  PubMed  Google Scholar 

  17. Fratini F, Cilia G, Mancini S, Felicioli A (2016) Royal jelly: an ancient remedy with remarkable antibacterial properties.S0944501316300830

  18. Ali MY, Rumpa NN, Paul S, Hossen MS, Tanvir EM, Hossan T, Saha M, Alam N, Karim N, Khalil MI, Gan SH (2019) Antioxidant potential, subacute toxicity, and beneficiary effects of methanolic extract of pomelo (Citrus grandis L Osbeck) in Long Evan rats. J Toxicol 2019:2529569. https://doi.org/10.1155/2019/2529569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer & metabolism 2:17. https://doi.org/10.1186/2049-3002-2-17

    Article  Google Scholar 

  20. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197. https://doi.org/10.1016/j.redox.2015.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Onyiah JC, Sheikh SZ, Maharshak N, Steinbach EC, Russo SM, Kobayashi T, Mackey LC, Hansen JJ, Moeser AJ, Rawls JF, Borst LB, Otterbein LE, Plevy SE (2013) Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology 144:789–798. https://doi.org/10.1053/j.gastro.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  22. Mansour AT, Goda AA, Omar EA, Khalil HS, Esteban M (2017) Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immunol 68:516–524. https://doi.org/10.1016/j.fsi.2017.07.060

    Article  CAS  PubMed  Google Scholar 

  23. Schiavon M, Pilon-Smits EA (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19. https://doi.org/10.2134/jeq2016.09.0342

    Article  CAS  PubMed  Google Scholar 

  24. Maseko T, Howell K, Dunshea FR, Ng K (2014) Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 146:327–333

    Article  CAS  PubMed  Google Scholar 

  25. Hu Y, McIntosh GH, Le Leu RK, Young GP (2010) Selenium-enriched milk proteins and selenium yeast affect selenoprotein activity and expression differently in mouse colon. Br J Nutr 104:17–23. https://doi.org/10.1017/s0007114510000309

    Article  CAS  PubMed  Google Scholar 

  26. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144. https://doi.org/10.1016/s0753-3322(03)00035-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215. https://doi.org/10.1038/nature16504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghosh TS, Gupta SS, Bhattacharya T, Yadav D, Barik A, Chowdhury A, Das B, Mande SS, Nair GB (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS ONE 9:e95547. https://doi.org/10.1371/journal.pone.0095547

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ley RE, Turnbaugh PJ, Klein S, Gordon JIJN (2006) Microbial ecology: human gut microbes associated with obesity 444:1022–1023

    CAS  Google Scholar 

  30. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. https://doi.org/10.1186/1471-2180-9-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  32. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P (2005) Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32:1720–1724. https://doi.org/10.1038/ijo.2008.155

    Article  Google Scholar 

  33. Zhu G, Jiang Y, Yao Y, Wu N, Luo J, Hu M, Tu Y, Xu M (2019) Ovotransferrin ameliorates the dysbiosis of immunomodulatory function and intestinal microbiota induced by cyclophosphamide. Food Funct 10:1109–1122. https://doi.org/10.1039/c8fo02312c

    Article  CAS  PubMed  Google Scholar 

  34. Igarashi H, Ohno K, Horigome A, Fujiwara-Igarashi A, Kanemoto H, Fukushima K, Odamaki T, Tsujimoto H (2016) Fecal dysbiosis in miniature dachshunds with inflammatory colorectal polyps. Res Vet Sci 105:41–46. https://doi.org/10.1016/j.rvsc.2016.01.005

    Article  PubMed  Google Scholar 

  35. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, González A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB (2012) Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun 80:3786–3794. https://doi.org/10.1128/iai.00647-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, Zhou Y, Piccio L (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27:1222-1235.e1226. https://doi.org/10.1016/j.cmet.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frémont M, Coomans D, Massart S, De Meirleir K (2013) High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 22:50–56. https://doi.org/10.1016/j.anaerobe.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  40. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141:1782–1791. https://doi.org/10.1053/j.gastro.2011.06.072

    Article  CAS  PubMed  Google Scholar 

  41. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  42. Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA, Walter J, Legge R, Benson AK, Hatfield DL, Gladyshev VN (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25:2492–2499. https://doi.org/10.1096/fj.11-181990

    Article  CAS  Google Scholar 

  43. Monk JM, Lepp D, Wu W, Graf D, Mcgillis LH, Hussain A, Carey C, Robinson LE, Liu R, Tsao R, Brummer Y, Tosh SM, Power KA (2017) Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in C57Bl/6 male mice. J Funct Foods 38:663–674. https://doi.org/10.1016/j.jff.2017.02.002

    Article  CAS  Google Scholar 

  44. Lin R, Liu W, Piao M, Zhu H (2017) A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49:2083–2090. https://doi.org/10.1007/s00726-017-2493-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the special funds for Taishan industry leading talent Program (LJNY202003), Shandong agricultural fine varieties breeding Projects (2017LZN006), the earmarked fund for the China Agriculture Research System (No. CARS-44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Xu.

Ethics declarations

Ethics Approval

Animal experiments were conducted in accordance with the Animal Welfare Committee and approved by the ethics committee of Shandong Agricultural University (SDAU-2018–063).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Liu, Z., Wang, H. et al. Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice . Biol Trace Elem Res 200, 1763–1775 (2022). https://doi.org/10.1007/s12011-021-02800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02800-4

Keywords

Navigation