Skip to main content
Log in

Extra-Fortification of Zinc Upsets Vitellogenin Gene Expression and Antioxidant Status in Female of Clarias magur brooders

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present experiment was designed to evaluate the effect of graded level of zinc on Vitellogenin gene (Vtg) expression and antioxidant enzymes in threatened catfish, Clarias magur (C. magur). One hundred and eighty female C. magur with an average weight of 145 ± 5 g were allocated in twelve cemented tanks with dimension 4.5 × 2 × 1 m for a period of 60 days. Fish were distributed in four groups with three replicates following the completely randomised design. The first group treated as control (C) fed with basal diet contained normal zinc level, and remaining groups were fed with basal diets having 50, 200 and 300 mg/kg zinc acetate and treated as T1, T2 and T3 respectively. To evaluate the effect of dietary zinc supplementation on Vtg gene expression, three sampling were carried out, I sampling (April, before starting the experimental trail), II sampling (May, after 1 month of feeding trail) and III sampling (June before breeding season). In the present study, a dose-dependent relationship between Vtg gene expression and zinc inclusion in the diet of threatened catfish, C. magur, was reported. Vtg gene expression increased in all groups from I sampling to II sampling but the highest Vtg gene expression was found in T1 group and the lowest in T3 group at II sampling. Vtg gene expression among the treatments differs significantly (P < 0.05) in each sampling. Accumulation of zinc was measured by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) in C. magur and it was reported that the significantly higher (P < 0.05) zinc was accumulated in the liver and ovary of T3 group as compared to other groups. The antioxidant enzyme activities (superoxide dismutase, SOD, catalase and GST) were also measured in different tissues (liver, gill and ovary) to evaluate the effect of extra-supplementation of zinc on the antioxidant status. In T3 group, SOD, catalase and GST activities were significantly higher than those in other groups. In the current study, serum glucose level was also measured and it was found in increasing trend with inclusion of zinc in the diet of C. magur. In the present study, it can be concluded that the zinc exhibits beneficial effect only up to 50 mg/kg. Thus, it is concluded that supplementation of zinc at 200 mg/kg or more disrupts Vtg gene expression and antioxidant status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data is available on request for any requirement and/or specific verification.

References

  1. Jayaram KC (2006) Catfishes of India, 304–309 pp. Narendra Publishing house, New Delhi

    Google Scholar 

  2. Chakraborty A, Das S, Sarkar I, Dey A, Sinha M (2020) Seed production of endangered Indian Magur, Clarias magur (Hamilton, 1822) in low cost model with community participation. Int j fauna biol stud 7(3):17–20

    Google Scholar 

  3. Maurya PK, Shubham G, Majhi SK (2018) Factors posing threat to the endangered catfish Clarias magur (Hamilton 1822) and strategies for conservation. Environ Ecol 36(3):749–754

    Google Scholar 

  4. Vishwanath W (2010). Clarias magur. In: IUCN 2013. IUCN red list of threatened species. Version 2013.1. Available at: http://www.iucnredlist.org

  5. Goswami B (2007) Magur (Clarias batrachus) seed production using low cost hatcheries: a participatory approach in Dakshin Dinajpur District of West Bengal. India Aquac Asia 12(3):14

    Google Scholar 

  6. Srivastava PP, Raizada S, Dayal R, Chowdhary S, Lakra WS, Yadav AK, Sharma P, Gupta J (2012) Breeding and larval rearing of Asian catfish, Clarias batrachus (Linnaeus, 1758) on live and artificial feed. J. Aquac Res Dev 3(4).DOI: https://doi.org/10.4172/2155-9546.1000134

  7. Roy A, Mollah MFA (2009) Effects of different dietary levels of vitamin E on the ovarian development and breeding performances of Clarias batrachus (Linnaeus). J Bangladesh Agril Univ 7(1):183–191. https://doi.org/10.3329/jbau.v7i1.4983

    Article  Google Scholar 

  8. Lubzens E, Lissauer L, Levavi-Sivan B, Avarre JC, Sammar M (2003) Carotenoid and retinoid transport to fish oocytes and eggs: what is the role of retinol binding protein? Mol Aspects Med 24(6):441–457. https://doi.org/10.1016/s0098-2997(03)00040-2

    Article  CAS  PubMed  Google Scholar 

  9. Avarre JC, Lubzens E, Babin PJ (2007) Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein. B. BMC Evol Biol 7 (3). Doi: https://doi.org/10.1186/1471-2148-7-3

  10. Chatakondi NG, Kelly AM (2013) Oocyte diameter and plasma vitellogenin as predictive factors to identify potential channel catfish, Ictalurus punctatus, suitable for induced spawning. J World Aquac Soc 44(1):115–123. https://doi.org/10.1111/jwas.12001

    Article  Google Scholar 

  11. Reading BJ, Sullivan CV, Schilling J (2011) Vitellogenesis in fishes. Encyclopedia of fish physiology: from genome to environment 1:635–646

    Article  Google Scholar 

  12. Sandnes K, Ulgenes Y, OR, Utne F, (1984) The effect of ascorbic acid supllementation in brood fish seed on reproduction of rainbow trout Salmo guirdneri. Aquac 43:167–177. https://doi.org/10.1016/0044-8486(84)90019-X

    Article  CAS  Google Scholar 

  13. Dhawan A, Kaur K (1997) Effect of zinc on maturation and breeding potential of Cyprinus carpio and Cirrhina mrigala. Int J Environ Stud 53(4):265–274. https://doi.org/10.1080/00207239708711130

    Article  CAS  Google Scholar 

  14. Zhou XW, Zhu GN, Sun JH (2002) Effects of the interaction of heavy metals on the accumulation of copper in the tissues of the fish (Carassius auratus). J Zhejiang Univ Sci B 28(4):427–430 ((in Chinese))

    CAS  Google Scholar 

  15. Willis JN, Sunda WG (1984) Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Mar Biol 80(3):273–279. https://doi.org/10.1007/bf00392822

    Article  CAS  Google Scholar 

  16. Wei, W., Li, A., Li, D., 1999. Effect of dietary supplemented zinc on the growth and some biochemical parameters of juvenile flounder Paralichthys olioaceus . J. Ocean Uni. Qingdao 18, 60–66, in Chinese with English abstract .

  17. Beaver LM, Nkrumah-Elie YM, Truong L, Barton CL, Knecht AL, Gonnerman GD, Wong CP, Tanguay RL, Ho E (2017) Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J Nutr Biochem 43:78–87.doi/https://doi.org/10.1016/j.jnutbio.2017.02.006

  18. Banks SD, Thomas P, Baer KN (1999) Seasonal variations in hepatic and ovarian zinc concentrations during the annual reproductive cycle in female channel catfish (Ictalurus punctatus). Comp Biochem Physiol C Toxicol Pharmacol Toxicol and Endocrinol 124(1):65–72. https://doi.org/10.1016/s0742-8413(99)00053-5

    Article  CAS  Google Scholar 

  19. Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G (2009) Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotox Environ Safe 72(8):2130–2136. https://doi.org/10.1016/j.ecoenv.2009.06.004

    Article  CAS  Google Scholar 

  20. Tan LN, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquacult Nutr 17(3):338–345. https://doi.org/10.1111/j.1365-2095.2010.00793.x

    Article  CAS  Google Scholar 

  21. Akram Z, Fatima M, Shah SZH, Afzal M, Hussain SM, Hussain M, Khan ZI, Akram K (2019) Dietary zinc requirement of Labeo rohita juveniles fed practical diets. J Appl Anim Res 47(1):223–229. https://doi.org/10.1080/09712119.2019.1613238

    Article  CAS  Google Scholar 

  22. Pierson KB (1981) Effects of chronic zinc exposure on the growth, sexual maturity, reproduction, and bioaccumulation of the guppy, Poecilia reticulata. Can. J. Fish. Aquat. Sci 38(1):23–31. https://doi.org/10.1139/f81-004

    Article  CAS  Google Scholar 

  23. Buentello JA, Goff JB, Gatlin DM III (2009) Dietary zinc requirement of hybrid striped bass, Morone chrysops× Morone saxatilis, and bioavailability of two chemically different zinc compounds. J World Aquac Soc 40(5):687–694. https://doi.org/10.1111/j.1749-7345.2009.00288.x

    Article  Google Scholar 

  24. Hook SE, Fisher NS (2002) Relating the reproductive toxicity of five ingested metals in calanoid copepods with sulfur affinity. Mar. Environ. Res. 53(161):174. https://doi.org/10.1016/s0141-1136(01)00118-0

    Article  Google Scholar 

  25. Srivastava NK, Prakash S (2018) Effect of sublethal concentration of zinc sulphate on the serum biochemical parameters of freshwater cat fish, Clarias Batrachus (LINN). Indian J. Exp. Biol. 5 (2) DOI: https://doi.org/10.21088/ijb.2394.1391.5218.1

  26. Huang F, Jiang M, Wen H, Wu F, Liu W, Tian J, Yang C (2015) Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses Aquac439 :53–59.doi/https://doi.org/10.1016/j.aquaculture.2015.01.018

  27. Cao L, Huang W, Liu J, Yin X, Dou S (2010) Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp. Biochem. Physiol. C 151(3):386–392. https://doi.org/10.1016/j.cbpc.2010.01.004

    Article  CAS  Google Scholar 

  28. Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short-andlong-term exposure to Cu2+ and Zn2. Chemosphere 62:538–544. https://doi.org/10.1016/j.chemosphere.2005.06.031

    Article  CAS  PubMed  Google Scholar 

  29. Lee SR (2018) Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev 2018:9156285. https://doi.org/10.1155/2018/9156285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta G, Srivastava PP, Kumar M, Varghese T, Chanu TI, Gupta S, Ande MP Jana P (2021) The modulation effects of dietary zinc on reproductive performance and gonadotropins’(FSH and LH) expression in threatened Asian catfish, Clarias magur (Hamilton, 1822) brood fish Aquac Res 2021;00:1–12.doi: https://doi.org/10.1111/are.15077

  31. AOAC (1995). Official methods of analysis (16th ed.). Association of official analytical chemists.

  32. Aripin SA, Jintasataporn O, Yoonpundh R (2015) Effects of zinc amino acid in walking catfish (Clarias macrocephalus) female broodstock first sexual maturation. J Aquac Res Dev 6(7):1. https://doi.org/10.4172/2155-9546.1000347

    Article  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1996) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Animal Biochemistry 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  35. Takhara S, Hamilton HB, Neel JV, Kobara TY, Ogura Y, Nishimura ET (1960) Hypoctalasemia, a new genetic carrier state. J Clin Investig 39:610–619. https://doi.org/10.1172/JCI104075

    Article  Google Scholar 

  36. Mishra HP, Frodovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and simple assay for SOD. J Biol Chem 247:3175. https://doi.org/10.1016/S0021-9258(19)45228-9

    Article  Google Scholar 

  37. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-s-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  CAS  PubMed  Google Scholar 

  38. Tang JX, Li JR, Liu ZL, Zhao H, Tao XM, Cheng ZS (2013) Effects of Zn2+ and Cu2+ on loach ovaries and ova development. Zool Res 34(E4−5):E135–E139

    CAS  Google Scholar 

  39. Korte JJ, Kahl MD, Jensen KM, Pasha MS, Parks LG, LeBlanc GA, Ankley GT (2000) Fathead minnow vitellogenin: complementary DNA sequence and messenger RNA and protein expression after 17β-estradiol. Environ Toxicol Chem 19:972–981. https://doi.org/10.1002/etc.5620190426

    Article  CAS  Google Scholar 

  40. Xuefei L, Shao J, Zhou Q, Song M, Jiang G (2009) Circannual vitellogenin levels in Chinese loach (Misgurnus anguillicaudatus). Environmental Biology of Fishes 85, 23–29.155S.K. Garnayak et al. Aquac 392–395(2013):148–155

    Google Scholar 

  41. Pacoli CQ, Grizzle JM, Bradley JT (1990) Seasonal levels of serum vitellogenin and oocyte growth in the channel catfish Ictalurus punctatus. Aquac 90(3–4):353–367. https://doi.org/10.1016/0044-8486(90)90259-p

    Article  CAS  Google Scholar 

  42. Kobayashi T, Pakarinen P, Torgersen J, Huhtaniemi I, Andersen O (2008) The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus) – 2. Differential follicle expression and asynchronous oogenesis. Gen Comp Endocrinol 156:595–602. https://doi.org/10.1016/j.ygcen.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  43. Kaya S, Umucalilar HD, Haliloğlu S, İpek H (2001) Effect of dietary vitamin A and zinc on egg yield and some blood parameters of laying hens. Turk J Vet Anim Sci 25(5):763–769

    Google Scholar 

  44. Samuel MN, Pamela I, Ego OA, Samuel EO (2015) Effects of zinc oxide as forced-resting agent for layers on post-moult quality and nutritional value of eggs. J Chem Pharm Res 7(5):16–20

    CAS  Google Scholar 

  45. Guo YM, Yang R, Yuan J, Ward TL, Fakler TM (2006) Effect of Availa® Zn and zinc sulfate on egg zinc concentration, laying performance and egg quality. Program and Abstracts Bioavailability, pp.7–10.

  46. Montorzi M, Falchuk KH, Vallee BL (1995) Vitellogenin and lipovitellin: zinc proteins of Xenopus laevis oocytes. Biochem 34(34):10851–10858. https://doi.org/10.1021/bi00034a018

    Article  CAS  Google Scholar 

  47. Richards MP (1997) Trace mineral metabolism in the avian embryo. Poult Sci J 76(1):152–164. https://doi.org/10.1093/ps/76.1.152

    Article  CAS  Google Scholar 

  48. de Alkimin, GD and Fracácio, R., 2020. Analysis of vitellogenin by histochemical method as an indicator of estrogenic effect in male Danio rerio exposed to metals. Environmental Science and Pollution Research, pp.1–5.do/i10.1007/s11356–020–08302–5

  49. Thompson ED, Mayer GD, Glover CN, Capo T, Walsh PJ, Hogstrand C (2012) Zinc hyperaccumulation in squirrelfish (Holocentrus adscenscionis) and its role in embryo viability. PLoS ONE 7(10):46127. https://doi.org/10.1371/journal.pone.0046127

    Article  CAS  Google Scholar 

  50. Nomizu T, Falchuk KH, Vallee BL (1993) Zinc, iron, and copper contents of Xenopus laevis oocytes and embryos. Mol Reprod Dev 36(4):419–423. https://doi.org/10.1002/mrd.1080360403

    Article  CAS  PubMed  Google Scholar 

  51. Schreck CB, Lorz HW (1978) Stress response of coho salmon (Oncorhynchus kisutch) elicited by cadmium and copper and potential use of cortisol as an indicator of stress. J Fish Res Board Can 35(8):1124–1129. https://doi.org/10.1139/f78-177

    Article  CAS  Google Scholar 

  52. Alkahemal-Balawi HF, Ahmad Z, Al-Akel AS, Al-Misned F, Suliman EAM, Al-Ghanim KA (2011) Toxicity bioassay of lead acetate and effects of its sub-lethal exposure on growth, haematological parameters and reproduction in Clarias gariepinus. Afr J. Biotechnol 10(53):11039–11047. https://doi.org/10.5897/ajb11.1463

    Article  CAS  Google Scholar 

  53. Pickering AD, Pottinger TG, Christie P (1982) Recovery of the brown trout, Salmo trutta L., from acute handling stress: a time‐course study. J. Fish Biol 20(2):229–244. https://doi.org/10.1111/j.1095-8649.1982.tb03923.x

    Article  Google Scholar 

  54. Lee JW, Kim JE, Shin YJ, Ryu JS, Eom IC, Lee JS, Kim Y, Kim PJ, Choi KH, Lee BC (2014) Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotox Environ Safe 104:9–17. https://doi.org/10.1016/j.ecoenv.2014.01.040

    Article  CAS  Google Scholar 

  55. Hadi AA, Shokr AE, Alwan SF (2009) Effects of aluminum on the biochemical parameters of fresh water fish, Tilapia zillii. Journal of Science and its applications 3(1):33–41

    Google Scholar 

  56. Canli M (1995) Effect of Hg, Cr, Ni on glycogen reserves and protein levels in tissues of Cyprinus carpio. Turk J Zool 20:161–168

    Google Scholar 

  57. Basha PS, Rani AU (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Safety 56(2):218–221

    Article  CAS  PubMed  Google Scholar 

  58. Barak P, Helmke PA (1993) The chemistry of zinc. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 90–106

    Google Scholar 

  59. Gupta G, Chatterjee A, Kumar M, Sardar P, Varghese T, Srivastava PP, Gupta S (2020) Efficacy of single and multiple doses of fenbendazole against gill parasites (Dactylogyrus sp.) of Labeo rohita (Hamilton, 1822) and its physio‐metabolic effects on the fish. Aquac Res 51(3):1190–1199

    Article  CAS  Google Scholar 

  60. Gupta G, Kumar M, Sardar P, Varghese T, Srivastava PP, Gupta S (2021) Pharmacokinetics and physio-metabolic response of single and multiple dose of fenbendazole in Labeo rohita (Hamilton, 1822) fingerlings. Aquac Res 52(1):260–272. https://doi.org/10.1111/are.14889

    Article  CAS  Google Scholar 

  61. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  63. Miessler GL, Tarr DA (2010) Inorg Chem 2010:644–647

    Google Scholar 

  64. Richardson J, Thomas KA, Rubin BH, Richardson DC (1975) Crystal structure of bovine Cu,Zn superoxide dismutase at 3 Å resolution: chain tracing and metal ligands. Proc Natl Acad Sci USA 72(4):1349–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meiler K, Cleveland B, Radler L, Kumar V (2020) Oxidative stress-related gene expression in diploid and triploid rainbow trout (Oncorhynchus mykiss) fed diets with organic and inorganic zinc. Aquac 533:736149. https://doi.org/10.1016/j.aquaculture.2020.736149

    Article  CAS  Google Scholar 

  66. Jiang M, Wu F, Huang F, Wen H, Liu W, Tian J, Yang CG, Wang WM (2016) Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream. Megalobrama amblycephala Aquac 464:121–128

    Article  CAS  Google Scholar 

  67. Banni M, Chouchene L, Said K, Kerkeni A, Messaoudi I (2011) Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio. Biometals 24:981–992. https://doi.org/10.1007/s10534-011-9456-z

    Article  CAS  PubMed  Google Scholar 

  68. Feng L, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 17:E875–E882

    Article  Google Scholar 

  69. Guo J, He L, Li T, Yin J, Yin Y, Guan G (2020) Antioxidant and anti-inflammatory effects of different zinc sources on diquat-induced oxidant stress in a piglet model. BioMed Res. Int, 2020.

  70. Chung MJ, Walker PA, Hogstrand C (2004) Metal physiology and biochemistry in fish cells: from toxicity to protection by zinc. Comp Biochem Physiol C 100:137–147

    Google Scholar 

  71. Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environ Sci Pollut Res 20(4):2133–2149

    Article  CAS  Google Scholar 

Download references

Funding

The funding was for student research and was provided by the institute itself. No external funding was available.

Author information

Authors and Affiliations

Authors

Contributions

Gyandeep Gupta: conceptualisation and data curation; Prem Prakash Srivastava: conceptualisation, formal analyses, sources and software; Gyandeep Gupta, Prem Prakash Srivastava: roles in writing-original draft. Tincy Varghese: writing-review and editing and supervision; Thongam I. Chanu, Subodh Gupta, Muralidhar P. Ande, Gopal Krishna: review and editing; Prashana Jana: help in sampling, review and editing.

Corresponding author

Correspondence to Prem Prakash Srivastava.

Ethics declarations

Ethics Approval

The ICAR-CIFE research work on fish was approved by the ICAR-CIFE Research Ethics Review Committee.

Consent to Participate

All the authors participated as at appropriate to the work.

Consent for Publication

Authors permit the Editor to publish this paper in the journal, BTER.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G., Srivastava, P.P., Gangwar, M. et al. Extra-Fortification of Zinc Upsets Vitellogenin Gene Expression and Antioxidant Status in Female of Clarias magur brooders. Biol Trace Elem Res 200, 1861–1871 (2022). https://doi.org/10.1007/s12011-021-02793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02793-0

Keywords

Navigation