Skip to main content
Log in

Effects of Zinc Oxide Nanoparticles on Growth, Intestinal Barrier, Oxidative Status and Mineral Deposition in 21-Day-Old Broiler Chicks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This experiment was to study the effects of zinc oxide nanoparticles (ZnO-NPs) on growth, intestinal barrier, oxidative status, and mineral deposition. In total, 256 one-day-old chicks were randomly allotted to 4 dietary groups and fed with basal diet plus 80 mg/kg ZnSO4 (ZnSO4 group) or plus 40, 80, and 160 mg/kg ZnO-NPs, respectively, for 21 days. Compared with the ZnSO4 group, dietary 40, 80, and 160 mg/kg ZnO-NPs did not alter growth (average daily gain, body weight, and gain to feed ratio), and serum activities of glutamic-pyruvic transaminase, alkaline phosphatase and glutamic oxalacetic transaminase (P > 0.05). However, dietary 80 and 160 mg/kg ZnO-NPs linearly decreased serum D-lactate content and diamine oxidase activity (P < 0.01). Moreover, 80 mg/kg ZnO-NPs enhanced zonula occludens-1 (ZO-1) mRNA expression in jejunal mucosa (P = 0.02). Dietary ZnO-NPs increased total antioxidant capacity activity (P = 0.01), and 80 mg/kg ZnO-NPs decreased malondialdehyde content in jejunal mucosa as compared to the ZnSO4 group (P = 0.02). In contrast, dietary ZnO-NPs did not alter mRNA expressions of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, heme oxygennase-1 (HO-1) and NAD (P)H: quinone oxidoreductase 1 (NQO1) (P > 0.05). No significant difference was found in selected mineral concentrations (Mn, Cu, Fe and Zn) in the liver among ZnSO4 and 3 ZnO-NP groups (P > 0.05). However, 160 mg/kg ZnO-NPs increased fecal contents of Zn, Fe and Cu (P < 0.01), but did not affect fecal Mn level (P > 0.05). Therefore, results suggested that ZnO-NPs could be an additive to enhance the intestinal barrier and antioxidant capacity of broiler chicks, whereas the inclusion of 80 mg/kg would be more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and materials availability

The data and materials of this study will be made available on reasonable request.

References

  1. Oviedo-Rondón EO (2019) Holistic view of intestinal health in poultry. Anim Feed Sci Tech 250:1–8. https://doi.org/10.1016/j.anifeedsci.2019.01.009

    Article  Google Scholar 

  2. Choct M (2009) Managing gut health through nutrition. Br Poult Sci 50:9–15. https://doi.org/10.1080/00071660802538632

    Article  CAS  PubMed  Google Scholar 

  3. Yegani M, Korver D (2008) Factors affecting intestinal health in poultry. Poult Sci 87:2052–2063. https://doi.org/10.3382/ps.2008-00091

    Article  CAS  PubMed  Google Scholar 

  4. Awad WA, Hess C, Hess M (2017) Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 9:60. https://doi.org/10.3390/toxins9020060

    Article  PubMed Central  Google Scholar 

  5. Mishra B, Jha R (2019) Oxidative stress in the poultry gut: potential challenges and interventions. Front Vet Sci 6:60. https://doi.org/10.3389/fvets.2019.00060

    Article  PubMed  PubMed Central  Google Scholar 

  6. Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Sá LR, Ferreira AJ, Palermo-Neto J (2010) Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult Sci 89:1905–1914. https://doi.org/10.3382/ps.2010-00812

    Article  CAS  PubMed  Google Scholar 

  7. Brewer M, Rojas M (2008) Consumer attitudes toward issues in food safety. J Food Saf 28:1–22. https://doi.org/10.1111/j.1745-4565.2007.00091.x

    Article  Google Scholar 

  8. Morgan N (2017) Managing gut health without reliance on antimicrobials in poultry. Anim Prod Sci 57:2270–2279. https://doi.org/10.1071/AN17288

    Article  CAS  Google Scholar 

  9. Choi S, Liu X, Pan Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39:1120–1132. https://doi.org/10.1038/aps.2018.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. National Research Council (1994) Nutrient requirements of poultry. 9th rev. ed. National Academic Press, Washington, DC

  11. De Grande A, Leleu S, Delezie E, Rapp C, De Smet S, Goossens E, Haesebrouck F, Van Immerseel F, Ducatelle R (2020) Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poult Sci 99:441–453. https://doi.org/10.3382/ps/pez525

    Article  CAS  PubMed  Google Scholar 

  12. Sunder GS, Panda AK, Gopinath N et al (2008) Effects of higher levels of Zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. J Appl Poult Res 17:79–86

    Article  CAS  Google Scholar 

  13. Zhu C, Lv H, Chen Z, Wang L, Wu XJ, Chen ZJ, Zhang WN, Liang R, Jiang ZY (2017) Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biol Trace Elem Res 175:331–338. https://doi.org/10.1007/s12011-016-0767-3

    Article  CAS  PubMed  Google Scholar 

  14. Sandoval M, Henry PR, Ammerman CB, Miles RD, Littell RC (1997) Relative bioavailability of supplemental inorganic zinc sources for chicks. J Anim Sci 75:3195–3205. https://doi.org/10.2527/1997.75123195x

    Article  CAS  PubMed  Google Scholar 

  15. Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–526. https://doi.org/10.1039/b312655b

    Article  CAS  Google Scholar 

  16. Swain PS, Rao SBN, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2:134–141. https://doi.org/10.1016/j.aninu.2016.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  17. Croteau MN, Dybowska AD, Luoma SN, Valsamijones E (2011) A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 5:79–90. https://doi.org/10.3109/17435390.2010.501914

    Article  CAS  PubMed  Google Scholar 

  18. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160:361–367. https://doi.org/10.1007/s12011-014-0052-2

    Article  CAS  PubMed  Google Scholar 

  19. Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C, Valyi-Nagy T, Adelung R, Prabhakar BS, Shukla D (2016) Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 196:4566–4575. https://doi.org/10.4049/jimmunol.1502373

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T (2018) Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol Trace Elem Res 185:364–374. https://doi.org/10.1007/s12011-018-1266-5

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T (2016) Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0164434

  22. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:1–8. https://doi.org/10.1155/2014/925494

    Article  CAS  Google Scholar 

  23. Shen MM, Zhang LL, Chen YN, Zhang YY, Han HL, Niu Y, He JT, Zhang YL, Cheng YF, Wang T (2019) Effects of bamboo leaf extract on growth performance, meat quality, and meat oxidative stability in broiler chickens. Poult Sci 98:6787–6796. https://doi.org/10.3382/ps/pez404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Cheng Y, Li X, Zhang H, Yang W, Wen C, Zhou Y (2016) Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age. Anim Feed Sci Technol 219:200–209. https://doi.org/10.1016/j.anifeedsci.2016.06.013

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Shao Y, Liu D, Yin P, Guo Y, Yuan J (2012) Zinc prevents Salmonella enterica serovar Typhimurium-induced loss of intestinal mucosal barrier function in broiler chickens. Avian Pathol 41:361–367. https://doi.org/10.1080/03079457.2012.692155

    Article  CAS  PubMed  Google Scholar 

  27. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  PubMed  Google Scholar 

  28. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photoch Photobio B 120:66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004

    Article  CAS  Google Scholar 

  29. Ahmad M, Zhu J (2010) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21:599–614. https://doi.org/10.1039/c0jm01645d

    Article  CAS  Google Scholar 

  30. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. https://doi.org/10.1007/s11051-006-9150-1

    Article  CAS  Google Scholar 

  31. Wang C, Cheng K, Zhou L, He J, Zheng X, Zhang L, Zhong X, Wang T (2017) Evaluation of long-term toxicity of oral zinc oxide nanoparticles and zinc sulfate in mice. Biol Trace Elem Res 178:276–282. https://doi.org/10.1007/s12011-017-0934-1

    Article  CAS  PubMed  Google Scholar 

  32. Wang MQ, Wang C, Li H, Du YJ, Tao WJ, Ye SS, He YD (2012) Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biol Trace Element Res 149:197–203. https://doi.org/10.1007/s12011-012-9428-3

    Article  CAS  Google Scholar 

  33. Bai G, Li H, Ge Y, Zhang Q, Zhang J, Chen M, Liu T, Wang H (2018) Influence of hydrogen-rich saline on hepatocyte autophagy during laparoscopic liver ischaemia-reperfusion combined resection injury in miniature pigs. J Vet Res 62:395–403. https://doi.org/10.2478/jvetres-2018-0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou YP, Jiang ZM, Sun YH, He GZ, Shu H (2004) The effects of supplemental glutamine dipeptide on gut integrity and clinical outcome after major escharectomy in severe burns: a randomized, double-blind, controlled clinical trial. Clin Nutr 1:55–60. https://doi.org/10.1016/j.clnu.2004.07.012

    Article  CAS  Google Scholar 

  35. Murray MJ, Barbose JJ, Cobb CF (1993) Serum D (-)-lactate levels as a predictor of acute intestinal ischemia in a rat model. J Surg Res 54:507–509. https://doi.org/10.1006/jsre.1993.1078

    Article  CAS  PubMed  Google Scholar 

  36. Tossou MC, Liu H, Bai M, Chen S, Cai Y, Duraipandiyan V, Liu H, Adebowale TO, Al-Dhabi NA, Long L, Tarique H, Oso AO, Liu G, Yin Y (2016) Effect of high dietary tryptophan on intestinal morphology and tight junction protein of weaned pig. Biomed Res Int 2016:1–6. https://doi.org/10.1155/2016/2912418

    Article  CAS  Google Scholar 

  37. Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659. https://doi.org/10.1007/s00018-012-1070-x

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Zhang L, Su W, Ying Z, He J, Zhang L, Zhong X, Wang T (2017) Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS ONE 12:e0181136. https://doi.org/10.1371/journal.pone.0181136

  39. Kohen R, Nyska A (2002) Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. https://doi.org/10.1080/01926230290166724

    Article  CAS  PubMed  Google Scholar 

  40. Bai MM, Liu HN, Xu K, Wen CY, Yu R, Deng JP, Yin YL (2019) Use of coated nano zinc oxide as an additive to improve the zinc excretion and intestinal morphology of growing pigs. J Anim Sci 97:1772–1783. https://doi.org/10.1093/jas/skz065

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shin SM, Yang JH, Ki SH (2013) Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013:1–9. https://doi.org/10.1155/2013/763257

    Article  CAS  Google Scholar 

  43. Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Bhushan V, Kroft SH (2005) Zinc-induced copper deficiency: a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123:125–131. https://doi.org/10.1309/v6gvyw2qtyd5c5pj

    Article  PubMed  Google Scholar 

  44. Hamilton R, Fox M, Fry B, Jones A, Jacobs R (1979) Zinc interference with copper, iron and manganese in young Japanese quail. J Food Sci 44:738–741. https://doi.org/10.1111/j.1365-2621.1979.tb08488.x

    Article  CAS  Google Scholar 

  45. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276. https://doi.org/10.1007/s11051-007-9245-3

    Article  CAS  Google Scholar 

  46. Van Campen DR, Scaife PU (1967) Zinc interference with copper absorption in rats. J Nutr 91:473–476. https://doi.org/10.1093/jn/91.4.473

    Article  PubMed  Google Scholar 

  47. Jondreville C, Revy PS, Dourmad JY (2003) Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest Prod Sci 84:147–156. https://doi.org/10.1016/j.livprodsci.2003.09.011

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the help of Liren Ding (College of Animal Science and Technology, Nanjing Agricultural University) in dealing with samples for the analysis of mineral concentrations.

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 31972598).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: C.W. and T.W.; performed: J.Z. (Jiaqi Zhang), C.Y., C.W., Z.L. and J.L.; analyzed the data: J.Z. (Jiaqi Zhang) and C.W.; contributed reagents/materials/analysis tools: J.Z. (Jiaqi Zhang), C.W. and Y.C. and wrote the manuscript: J.Z. and C.W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Ethics approval and consent to participate

This experiment was approved and carried out under the Institutional Animal Care and Use Committee of Nanjing Agricultural University (Jiangsu, China). The number of the ethics committee-approved protocol for the animal study is SYXK-2019–00017.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yu, C., Li, Z. et al. Effects of Zinc Oxide Nanoparticles on Growth, Intestinal Barrier, Oxidative Status and Mineral Deposition in 21-Day-Old Broiler Chicks. Biol Trace Elem Res 200, 1826–1834 (2022). https://doi.org/10.1007/s12011-021-02771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02771-6

Keywords

Navigation