Skip to main content
Log in

Induction of Cell Death in Pancreatic Tumors by Zinc and Its Fluorescence Chelator TSQ

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma is a devastating cancer and is the fourth-leading cause of cancer death in the USA. Zinc is abundant in the pancreas, but its role in pancreatic cancer remains elusive. The aim of this study is to determine effects of zinc chelators in pancreatic cancer. Pdx1Cre and LSL-KrasG12D mice expressing an oncogenic mutation of KRAS develop pancreatic intraepithelial neoplasia in the pancreas. We found that EPCAM + tumors developed in the mouse pancreas store zinc that is detectable by fluorescence-activated cell sorting using N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ), a fluorescence chelator. EPCAM + TSQ + tumor cells isolated from the mouse pancreas formed organoids in matrigel. Upon treatment with N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), a zinc chelator, the organoids degenerated and its negative effect was rescued by co-treatment with zinc, indicating that zinc is necessary for the growth and survival of tumor organoids. Different from TPEN, TSQ treatment did not affect the organoid growth and survival. Interestingly, co-treatment with TSQ and zinc resulted in strong emission of TSQ fluorescence in the organoid and its degeneration. The combination of zinc with TSQ, but not with TPEN, also induced cell death in PANC-1, a human pancreatic cancer cell line. These results suggest that a TSQ-zinc complex formed in pancreatic tumors induces cell death if zinc is overloaded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249. https://doi.org/10.1101/gad.1415606

    Article  CAS  PubMed  Google Scholar 

  2. Liou GY, Doppler H, Necela B, Krishna M, Crawford HC, Raimondo M, Storz P (2013) Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-kappaB and MMPs. J Cell Biol 202:563–577. https://doi.org/10.1083/jcb.201301001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JP, Pan FC, Akiyama H, Wright CV, Jensen K, Hebrok M, Sander M (2012) Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 22:737–750. https://doi.org/10.1016/j.ccr.2012.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asahina K, Balog S, Hwang E, Moon E, Wan E, Skrypek K, Chen Y, Fernandez J, Romo J, Yang Q, Lai K, French SW, Tsukamoto H (2020) Moderate alcohol intake promotes pancreatic ductal adenocarcinoma development in mice expressing oncogenic Kras. Am J Physiol Gastrointest Liver Physiol 318:G265-276. https://doi.org/10.1152/ajpgi.00218.2019

    Article  CAS  PubMed  Google Scholar 

  5. Morris JPt, Wang SC, Hebrok M, (2010) KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 10:683–695. https://doi.org/10.1038/nrc2899

    Article  CAS  Google Scholar 

  6. Chiaravalli M, Reni M, O’Reilly EM (2017) Pancreatic ductal adenocarcinoma: state-of-the-art 2017 and new therapeutic strategies. Cancer Treat Rev 60:32–43. https://doi.org/10.1016/j.ctrv.2017.08.007

    Article  PubMed  Google Scholar 

  7. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  8. Martin AM, Hidalgo M, Alvarez R, Arrazubi V, Martinez-Galan J, Salgado M, Macarulla T, Carrato A (2018) From first line to sequential treatment in the management of metastatic pancreatic cancer. J Cancer 9:1978–1988. https://doi.org/10.7150/jca.23716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunk PR, Bauer TW, Slingluff CL, Rahma OE (2016) From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 4:14. https://doi.org/10.1186/s40425-016-0119-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022. https://doi.org/10.1038/nrdp.2016.22

    Article  PubMed  Google Scholar 

  11. Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B, Goggins M (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142:730–733. https://doi.org/10.1053/j.gastro.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  12. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  CAS  Google Scholar 

  13. Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13:337–343. https://doi.org/10.2119/2007-00037.Sekler

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelleher SL, McCormick NH, Velasquez V, Lopez V (2011) Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2:101–111. https://doi.org/10.3945/an.110.000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andrews JC, Nolan JP, Hammerstedt RH, Bavister BD (1995) Characterization of N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide for the detection of zinc in living sperm cells. Cytometry 21:153–159. https://doi.org/10.1002/cyto.990210207

    Article  CAS  PubMed  Google Scholar 

  16. Meeusen JW, Tomasiewicz H, Nowakowski A, Petering DH (2011) TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline), a common fluorescent sensor for cellular zinc, images zinc proteins. Inorg Chem 50:7563–7573. https://doi.org/10.1021/ic200478q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baltaci AK, Mogulkoc R, Baltaci SB (2019) Review: the role of zinc in the endocrine system. Pak J Pharm Sci 32:231–239

    CAS  PubMed  Google Scholar 

  18. Jayaraman AK, Jayaraman S (2011) Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells. J Nutr Biochem 22:79–88. https://doi.org/10.1016/j.jnutbio.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Donadelli M, DallaPozza E, Costanzo C, Scupoli MT, Scarpa A, Palmieri M (2008) Zinc depletion efficiently inhibits pancreatic cancer cell growth by increasing the ratio of antiproliferative/proliferative genes. J Cell Biochem 104:202–212. https://doi.org/10.1002/jcb.21613

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 104:18636–18641. https://doi.org/10.1073/pnas.0709307104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103. https://doi.org/10.1016/0165-0270(87)90042-2

    Article  CAS  PubMed  Google Scholar 

  22. Nitzan YB, Sekler I, Silverman WF (2004) Histochemical and histofluorescence tracing of chelatable zinc in the developing mouse. J Histochem Cytochem 52:529–539. https://doi.org/10.1177/002215540405200411

    Article  CAS  PubMed  Google Scholar 

  23. Horton TM, Allegretti PA, Lee S, Moeller HP, Smith M, Annes JP (2019) Zinc-chelating small molecules preferentially accumulate and function within pancreatic β cells. Cell Chem Biol 26:213–222. https://doi.org/10.1016/j.chembiol.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  24. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, Gracanin A, Oni T, Yu KH, van Boxtel R, Huch M, Rivera KD, Wilson JP, Feigin ME, Ohlund D, Handly-Santana A, Ardito-Abraham CM, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov GN, Delcuze B, Creighton B, Wright K, Park Y, Morsink FH, Molenaar IQ, BorelRinkes IH, Cuppen E, Hao Y, Jin Y, Nijman IJ, Iacobuzio-Donahue C, Leach SD, Pappin DJ, Hammell M, Klimstra DS, Basturk O, Hruban RH, Offerhaus GJ, Vries RG, Clevers H, Tuveson DA (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338. https://doi.org/10.1016/j.cell.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  25. Skrypek K, Balog S, Eriguchi Y, Asahina K (2021) Inhibition of stearoyl-CoA desaturase induces the unfolded protein response in pancreatic tumors and suppresses their growth. Pancreas 50:219–226. https://doi.org/10.1097/mpa.0000000000001737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoodi M, Li VS, Schuijers J, Gracanin A, Ringnalda F, Begthel H, Hamer K, Mulder J, van Es JH, de Koning E, Vries RG, Heimberg H, Clevers H (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721. https://doi.org/10.1038/emboj.2013.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39:425–435. https://doi.org/10.1097/MPA.0b013e3181c15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Yang J, Cui X, Chen Y, Zhu VF, Hagan JP, Wang H, Yu X, Hodges SE, Fang J, Chiao PJ, Logsdon CD, Fisher WE, Brunicardi FC, Chen C, Yao Q, Fernandez-Zapico ME, Li M (2013) A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth. EMBO Mol Med 5:1322–1334. https://doi.org/10.1002/emmm.201302507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu M, Zhang Y, Yang J, Zhan H, Zhou Z, Jiang Y, Shi X, Fan X, Zhang J, Luo W, Fung KA, Xu C, Bronze MS, Houchen CW, Li M (2021) Zinc-dependent regulation of ZEB1 and YAP1 co-activation promotes epithelial-mesenchymal transition plasticity and metastasis in pancreatic cancer. Gastroenterology 160:1771–1783. https://doi.org/10.1053/j.gastro.2020.12.077

    Article  CAS  PubMed  Google Scholar 

  30. Rybarczyk P, Vanlaeys A, Brassart B, Dhennin-Duthille I, Chatelain D, Sevestre H, Ouadid-Ahidouch H, Gautier M (2017) The transient receptor potential melastatin 7 channel regulates pancreatic cancer cell invasion through the Hsp90α/uPA/MMP2 pathway. Neoplasia 19:288–300. https://doi.org/10.1016/j.neo.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie J, Cheng CS, Zhu XY, Shen YH, Song LB, Chen H, Chen Z, Liu LM, Meng ZQ (2019) Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging 11:2681–2698. https://doi.org/10.18632/aging.101940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the pilot project from the Southern California Research Center for ALPD & Cirrhosis (National Institutes of Health P50AA11999) and USC Dean’s pilot project program.

Author information

Authors and Affiliations

Authors

Contributions

KA is the only author who contributed to all in this manuscript.

Corresponding author

Correspondence to Kinji Asahina.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asahina, K. Induction of Cell Death in Pancreatic Tumors by Zinc and Its Fluorescence Chelator TSQ. Biol Trace Elem Res 200, 1667–1676 (2022). https://doi.org/10.1007/s12011-021-02770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02770-7

Keywords

Navigation