Skip to main content
Log in

Anti-Hyperuricemic Effect of Iron Oxide Nanoparticles against Monosodium Urate Crystals Induced Gouty Arthritis in BALB/c Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (FeO-NPs) exhibit exceptional properties which can be utilized in various aspects of biological sciences. In this experiment we investigated the anti-gout effectiveness of FeO-NPs in mice. BALB/c mice were induced gouty arthritis by administering monosodium urate (MSU) crystals. These gout induced mice were treated with three different concentrations of FeO-NPs (5 ppm, 10 ppm and 20 ppm). Precipitation method was utilized for the synthesis of FeO-NPs, these synthesized NPs were of average 54 nm in size and were characterized using XRD, SEM and EDS. FeO-NPs is given orally three weeks by using FeO-NPs solution to substitute drinking water. Blood biochemical parameters including liver function tests (LFTs), renal function tests (RFTs), lipid profile and blood count have been tested. It has been found that uric acid, blood urea and creatinine have decreased significantly after three weeks of FeO-NP administration (P Value < 0.001) thus suppressing hyperuricemia and gouty arthritis. Additionally, the liver enzymes analysis showed a slight increase in AST, ALT and alkaline phosphatase levels (P Value < 0.001). Histopathological research revealed no significant abnormal changes in the liver, muscle and kidney muscles of the test groups. The findings showed that FeO-NPs can be used for the successful treatment of hyperuricemic condition and gouty arthritis in the coming future in place of commercially available medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kuo CF, Grainge MJ, Zhang W, Doherty M (2015) Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11:649–652. https://doi.org/10.1038/nrrheum.2015.91

    Article  PubMed  Google Scholar 

  2. Kramer HM, Curhan G (2002) The association between gout and nephrolithiasis; The national health and nutrition exainination survey HI, 1988–1994. Am J Kidney Dis 40:37–42. https://doi.org/10.1053/ajkd.2002.33911

    Article  PubMed  Google Scholar 

  3. Ashiq K, Latif A, Ashiq S, Sundus A (2018) A systematic review on the prevalence, pathophysiology, diagnosis, management and treatment of gout (2007–2018). GSC Biol Pharm Sci 5:050–5. https://doi.org/10.30574/gscbps.2018.5.1.0077

    Article  Google Scholar 

  4. Zhang W, Iso H, Murakaini Y, Miura K, Nagai M, Sugiyaina D et al (2016) Serum uric acid and mortality form cardiovascular disease: EPOCH-JAPAN study. J Atheroscler Thromb 23:692–693. https://doi.org/10.5551/jat.er31591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E et al (2014) Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol 10:654–661. https://doi.org/10.1038/nrrheum.2014.124

    Article  CAS  PubMed  Google Scholar 

  6. Susyani S, Desvianti D (2017) Nutrition counseling among patients with gout. Int J Publ Health Sci 6:360–70. https://doi.org/10.11591/ijphs.v6i4.10784

    Article  Google Scholar 

  7. Elahi M, Matata B (2013) Significance of the nitrosative-oxidative stress disequilibrium on endothelial dysfunction during cardiac development. Oxidants Antioxid Med Sci 2:73. https://doi.org/10.5455/oams.070413.rv.006

    Article  Google Scholar 

  8. Bustanji Y, Hudaib M, Tawaha K, Mohamunad M, Almasri I, Hamed S et al (2011) In vitro xanthine oxidase inhibition by selected Jordanian medicinal plants. Jordan J Pharm Sci 4:49–55. https://doi.org/10.4103/0973-1296.90413

    Article  Google Scholar 

  9. Sezai A, Soma M, Nakata K, Hata M, Yoshitake I, Wakui S et al Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients with chronic kidney disease (NU-FLASH Trial). J Cardiol 66: 298–303. https://doi.org/10.1016/j.jjcc.2014.12.017

  10. Estelrich J, Escribano E, Queralt J, Busquets M (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101. https://doi.org/10.3390/ijms16048070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gawande MB, Branco PS, Varma RS (2014) Nano-magnetite (Fe304) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371–3393. https://doi.org/10.1039/c3cs35480f

    Article  CAS  Google Scholar 

  12. Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts Chem Res 44:883–892. https://doi.org/10.1021/ar200044b

    Article  CAS  Google Scholar 

  13. Kiyani MM, Rehman H, Hussain MA, Jahan S, Afzal M, Nawaz I et al (2020) Inhibition of hyperuricemia and gouty arthritis in BALB/C mice using copper oxide nanoparticles. Biol Trace Elem Res 193:494–501. https://doi.org/10.1007/s12011-019-01734-2

    Article  CAS  PubMed  Google Scholar 

  14. Kiyani MM, Butt MA, Rehman H, Ali H, Hussain SA, Obaid S et al (2019) Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J Trace Elem Med Biol 56:169–177. https://doi.org/10.1016/j.jtemb.2019.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet Oxford University Press. https://doi.org/10.1093/jn/123.11.1939

  16. Razavian MH, Masaimanesh M (2014) Ingestion of silver nanoparticles leads to changes in blood parameters. Nanomed J 1:339–345

    Google Scholar 

  17. Karaagac O, Kockar H (2012) Effect of synthesis parameters on the properties of superparamagnetie iron oxide nanoparticles. J Supercond Nov Magn 25:2777–2781. https://doi.org/10.1007/s10948-011-1264-8

    Article  CAS  Google Scholar 

  18. Ortiz-Bravo E, Schumacher H (1993) Components generated locally as well as serum alter the phlogistic effect of monosodium urate crystals in vivo. J Rheumatol 20:1162–1166

    CAS  PubMed  Google Scholar 

  19. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327. https://doi.org/10.1021/mp7001285

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185. https://doi.org/10.1016/j.toxlet.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  21. Rehman H, Akram M, Kiyani MM, Yaseen T, Ghani A, Saggu JI et al (2020) Effect of endoxylanase and iron oxide nanoparticles on performance and histopathological features in broilers. Biol Trace Elem Res 193:524–535. https://doi.org/10.1007/s12011-019-01737-z

    Article  CAS  PubMed  Google Scholar 

  22. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olimedo I, Clos A, Ramanujam VMS et al (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393:649–655. https://doi.org/10.1016/j.bbrc.2010.02.046

    Article  CAS  PubMed  Google Scholar 

  23. Fagugli RM, Gentile G, Ferrara G, Brugnano R (2008) Acute renal and hepatic failure associated with allopurinol treatment. Clin Nephrol 70(12):523–6. https://doi.org/10.5414/cnp70523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubin Mustafa Kiyani.

Ethics declarations

Conflicts of Interest

There is no Conflicts of interest or competing interests among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Iron oxide nanoparticles (FeO-NPs) as therapeutic agent against hyperurecemia.

• Gouty arthritis induced by Monosodium Urate crystals.

• Discharge of uric acid decreased through urine due to deficiency of xanthine oxidase enzymes.

• FeO-NPs utilized for treatment of gouty arthritis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyani, M.M., Moghul, N.B., Butt, M.A. et al. Anti-Hyperuricemic Effect of Iron Oxide Nanoparticles against Monosodium Urate Crystals Induced Gouty Arthritis in BALB/c Mice. Biol Trace Elem Res 200, 1659–1666 (2022). https://doi.org/10.1007/s12011-021-02769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02769-0

Keywords

Navigation