Skip to main content
Log in

Improved Growth Performance, Antioxidant Status, Digestive Enzymes, Nutrient Digestibility and Zinc Bioavailability of Broiler Chickens with Nano-Sized Hot-Melt Extruded Zinc Sulfate

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This experiment was conducted to investigate the effect of the supplementation of hot-melt extrusion (HME) processed zinc sulfate (ZnSO4) on the growth performance, antioxidative activity, pancreatic digestive enzyme, small intestinal morphology, nutrient digestibility, and Zn content in broilers. The chicks were allocated to three treatments, each of which had five replicates of 15 chicks per replicate. The broiler chickens were assigned to three dietary treatments: the control (without supplemental Zn), IN-Zn (ZnSO4, 80 mg/kg), and HME-Zn (HME processed ZnSO4 as nano-Zn, 80 mg/kg). The broilers fed diets supplemented with 80 mg/kg of HME-Zn improved the BWG (P < 0.05) and FCR (P < 0.05) compared to the broilers fed the control and IN-Zn diets in phase 2. The Zn supplementation significantly enhanced the superoxide dismutase (SOD) activity in the serum (P < 0.05) and liver (P < 0.05), and HME-Zn supplementation significantly increased the SOD in the liver compared to the IN-Zn supplementation. Reduced malondialdehyde (MDA) concentration was seen with the Zn supplementation compared to the control (P < 0.05). The chickens fed diets supplemented with the HME-Zn had higher activity of amylase (P < 0.05) and trypsin (P < 0.05) than those of the chickens fed the control and IN-Zn diets. The villus height (VH) in the duodenum (P < 0.05) and jejunum (P < 0.05) increased with the ZnSO4 and HME-Zn supplementation compared to the control. The VH and crypt depth rate (VH:CD) in the jejunum improved with the HME-Zn compared to the control (P < 0.05). The HME-Zn significantly increased the apparent ileal digestible crude protein (CP) (P < 0.05) and energy corrected by nitrogen (AIDEn) (P < 0.05) compared to the control or IN-Zn. In phases 1 and 2, the HME-Zn significantly increased Zn concentration in the liver and tibia compared to control and IN-Zn (P < 0.05). The excretion of Zn was significantly decreased in the HME-Zn compared to the IN-Zn (P < 0.05). In conclusion, supplementation of 80 mg/kg of HME-Zn in diets improved the growth performance, antioxidative activity, pancreatic enzyme activity, intestinal villus height, and nutrient digestibility with the improved Zn bioavailability in broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bun SD, Guo YM, Guo FC, Ji FJ, Cao H (2011) Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poult Sci 90(6):1220–1226. https://doi.org/10.3382/ps.2010-01308

    Article  CAS  PubMed  Google Scholar 

  2. Ma W, Niu H, Feng J, Wang Y, Feng J (2011) Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol Trace Elem Res 142(3):546–556. https://doi.org/10.1007/s12011-010-8824-9

    Article  CAS  PubMed  Google Scholar 

  3. Tang ZG, Wen C, Wang LC, Wang T, Zhou YM (2014) Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal function of broiler chickens. Anim Feed Sci Technol 189:98–106. https://doi.org/10.1016/j.anifeedsci.2013.12.014

    Article  CAS  Google Scholar 

  4. Tang Z, Wen C, Li P, Wang T, Zhou Y (2014) Effect of zinc-bearing zeolite clinoptilolite on growth performance, nutrient retention, digestive enzyme activities, and intestinal function of broiler chickens. Biol Trace Elem Res 158(1):51–57. https://doi.org/10.1007/s12011-014-9900-3

    Article  CAS  PubMed  Google Scholar 

  5. Rama Rao S, Prakash B, Raju MVLN, Panda AK, Kumari RK, Reddy EPK (2016) Effect of supplementing organic forms of zinc, selenium and chromium on performance, anti-oxidant and immune responses in broiler chicken reared in tropical summer. Biol Trace Elem Res 172(2):511–520. https://doi.org/10.1007/s12011-015-0587-x

    Article  CAS  Google Scholar 

  6. Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, De Oliveira ARS (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2):24–32. https://doi.org/10.3390/antiox6020024

    Article  CAS  PubMed Central  Google Scholar 

  7. Schlegel P, Sauvant D, Jondreville C (2013) Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal 7(1):47–59. https://doi.org/10.1017/S1751731112001000

    Article  CAS  PubMed  Google Scholar 

  8. Udechukwu MC, Collins SA, Udenigwe CC (2016) Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct 7(10):4137–4144. https://doi.org/10.1039/C6FO00706F

    Article  CAS  PubMed  Google Scholar 

  9. Hassan S, Hassan FU, Rehman MSU (2020) Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biol Trace Elem Res 195(2):591–612. https://doi.org/10.1007/s12011-019-01862-9

    Article  CAS  PubMed  Google Scholar 

  10. Ao T, Pierce JL, Pescatore AJ, Cantor AH, Dawson KA, Ford MJ, Paul M (2011) Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks. Br Poult Sci 52(4):466–471. https://doi.org/10.1080/00071668.2011.588198

    Article  CAS  PubMed  Google Scholar 

  11. Karamouz H, Ghalehkandi JG, Nazhad HZA, Nezhad YE, Sis NM (2011) Effect of different levels of zinc oxide supplement on mucosal sucrase enzyme activity in small intestine of male broiler chicks. Int J Anim Vet Adv 3(2):54–57

    CAS  Google Scholar 

  12. Ivanišinová O, Grešáková Ľ, Ryzner M, Oceľová V, Čobanová K (2016) Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Vet Brno 85(3):285–291. https://doi.org/10.2754/avb201685030285

    Article  Google Scholar 

  13. Ramiah SK, Awad EA, Mookiah S, Idrus Z (2019) Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult Sci 98(9):3828–3838. https://doi.org/10.3382/ps/pez093

    Article  CAS  PubMed  Google Scholar 

  14. Navidshad B, Mohammadrezaei M, Zarei M, Valizadeh R, Karamati S, Rezaei F, Jabbari S, Kachoei R, Esmaeilinasab P (2019) The new progresses in trace mineral requirements of broilers, a review. Iran J Appl Anim Sci 9(1):9–16

    CAS  Google Scholar 

  15. Sizova E, Miroshnikov S, Lebedev S, Usha B, Shabunin S (2020) Use of nanoscale metals in poultry diet as a mineral feed additive. Anim Nutr 6(2):185–191. https://doi.org/10.1016/j.aninu.2019.11.007

    Article  Google Scholar 

  16. Ibrahim D, Ali HA, El-Mandrawy SA (2017) Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J 45(3):292–304. https://doi.org/10.21608/zvjz.2017.7954

  17. El-Katcha M, Soltan MA, El-Badry M (2017) Effect of dietary replacement of inorganic zinc by organic or nanoparticles sources on growth performance, immune response and intestinal histopathology of broiler chicken. Alex J Vet Sci 55(2):129–145. https://doi.org/10.5455/ajvs.266925

    Article  Google Scholar 

  18. Biria A, Navidshad B, Aghjehgheshlag FM, Nikbin S (2021) The effect of in ovo supplementation of nano zinc oxide particles on hatchability and post-hatch immune system of broiler chicken. Iran J Appl Anim Sci 10(3):547–553. https://doi.org/10.26181/601cdb02beca4

  19. Dukare S, Mir NA, Mandal AB, Dev K, Begum J, Rokade JJ, Biswas A, Tyagi PK, Bhanja SK (2021) A comparative study on the antioxidant status, meat quality, and mineral deposition in broiler chicken fed dietary nano zinc viz-a-viz inorganic zinc. J Food Sci Technol 58(3):834–843. https://doi.org/10.1007/s13197-020-04597-x

    Article  CAS  PubMed  Google Scholar 

  20. Hussan F, Krishna D, Preetam VC, Reddy PB, Gurram S (2021) Dietary supplementation of nano zinc oxide on performance, carcass, serum and meat quality parameters of commercial broilers. Biol Trace Elem Res 1-6. https://doi.org/10.1007/s12011-021-02635-z

  21. Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA (2014) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp 457:263–274. https://doi.org/10.1016/j.colsurfa.2014.05.057

    Article  CAS  Google Scholar 

  22. Yusof HM, Mohamad R, Zaidan UH (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10(1):1–22. https://doi.org/10.1186/s40104-019-0368-z

    Article  CAS  Google Scholar 

  23. Yu Y, Lu L, Luo XG, Liu B (2008) Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters. Poult Sci 87(6):1146–1155. https://doi.org/10.3382/ps.2007-00430

    Article  CAS  PubMed  Google Scholar 

  24. Ollig J, Kloubert V, Weßels I, Haase H, Rink L (2016) Parameters influencing zinc in experimental systems in vivo and in vitro. Met 6(3):71–86. https://doi.org/10.3390/met6030071

    Article  Google Scholar 

  25. Lee SY, Nam SY, Choi YH, Kim MJ, Koo JS, Chae BJ, Kang WS, Cho HJ (2017) Fabrication and characterizations of hot-melt extruded nanocomposites based on zinc sulfate monohydrate and soluplus. Appl Sci 7(9):902–911. https://doi.org/10.3390/app7090902

    Article  CAS  Google Scholar 

  26. Kumar A, Hosseindoust A, Kim MJ, Kim KY, Choi YH, Lee SH, Lee SY, Lee JH, Cho HJ, Kang WS, Chae BJ (2020) Nano-sized zinc in broiler chickens: effects on growth performance, zinc concentration in organs, and intestinal morphology. J Poult Sci 0190115. https://doi.org/10.2141/jpsa.0190115

  27. Kim MJ, Shim YH, Choi YH, Kim KY, Lee SY, Nam SY, Koo JS, Kang WS, Cho HJ, Chae BJ (2017) Effects of supplementation of hot melt extrusion processed zinc sulfate on growth performance, nutrients digestibility, small intestinal morphologyand excretion of zinc in weanling pigs. Ann Anim Resour Sci 28(4):169–179. https://doi.org/10.12718/AARS.2017.28.4.169

  28. Lee JH, Hosseindoust A, Kim MJ, Kim KY, Choi YH, Moturi J, Song CH, Lee SY, Cho HJ, Chae BJ (2019) Effects of hot melt extrusion processed nano-iron on growth performance, blood composition, and iron bioavailability in weanling pigs. J Anim Sci Technol 61(4):216–224. https://doi.org/10.5187/jast.2019.61.4.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JH, Hosseindoust A, Kim MJ, Kim KY, Choi YH, Lee SH, Lee SY, Cho HJ, Kang WS, Chae BJ (2020) Biological evaluation of hot-melt extruded nano-selenium and the role of selenium on the expression profiles of selenium-dependent antioxidant enzymes in chickens. Biol Trace Elem Res 194(2):536–544. https://doi.org/10.1007/s12011-019-01801-8

    Article  CAS  PubMed  Google Scholar 

  30. Lee JH, Hosseindoust A, Kim MJ, Kim KY, Choi YH, Lee SH, Lee SY, Cho HJ, Chae BJ (2020) Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim Feed Sci Technol 262:114381–114389. https://doi.org/10.1016/j.anifeedsci.2019.114381

    Article  CAS  Google Scholar 

  31. Oh SM, Kim MJ, Hosseindoust A, Kim KY, Choi YH, Ham HB, Hwang SJ, Lee JH, Cho HJ, Kang WS, Chae BJ (2020) Hot melt extruded-based nano zinc as an alternative to the pharmacological dose of ZnO in weanling piglets. Asian-Australas J Anim Sci 33(6):992–1001. https://doi.org/10.5713/ajas.19.0140

    Article  CAS  PubMed  Google Scholar 

  32. Kim MJ, Hosseindoust A, Choi YH, Lee JH, Kim KY, Kim TG, Cho HJ, Kang WS, Chae BJ (2020) Effects of hot-melt extruded nano-copper as an alternative for the pharmacological dose of copper sulfate in weanling pigs. Biol Trace Elem Res 1-11. https://doi.org/10.1007/s12011-020-02426-y

  33. Aviagen (2014) Ross broiler management manual. http://pt. aviagen.com/assets/Tech_Center/Ross_Broiler/Ross_Broiler_ Manual. 9:350–364

  34. Bernfeld P (1951) Enzymes of starch degradation and synthesis. Adv Enzymol Relat Areas Mol Biol 12:379–428

    CAS  Google Scholar 

  35. Schmidt A (1974) Measurement of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma. Meth Enzymol 72:325–337. https://doi.org/10.1016/S0076-6879(81)72023-8

    Article  Google Scholar 

  36. Geiger R, Fritz H (1986) Trypsin. In: Bergmeyer H (ed) Methods of Enzymatic Analysis. Academic Press, New York, pp 119–129

    Google Scholar 

  37. AOAC (2007) Official Methods of Analysis of the Association of Official Analytical Chemists International, 18th edn. Gaithersburg, MD, USA

    Google Scholar 

  38. Roza LF, Tavernari FDC, Surek D, Sordi C, Albino LFT, Paiano D, Boiago MM, Petrolli TG, Júnior AC (2018) Metabolizable energy and amino acid digestibility of mash and pelleted diets for broilers determined under different methodologies. Anim Feed Sci Technol 235:1–7. https://doi.org/10.1016/j.anifeedsci.2017.11.003

    Article  CAS  Google Scholar 

  39. Mohammadi V, Ghazanfari S, Mohammadi-Sangcheshmeh A, Nazaran MH (2015) Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br Poult Sci 56(4):486–493. https://doi.org/10.1080/00071668.2015.1064093

    Article  CAS  PubMed  Google Scholar 

  40. Gopi MB, Kumar RD, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharm 13(7):724–731. https://doi.org/10.3923/ijp.2017.724.731

    Article  CAS  Google Scholar 

  41. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160(3):361–367. https://doi.org/10.1007/s12011-014-0052-2

    Article  CAS  PubMed  Google Scholar 

  42. Charão MF, Goethel G, Brucker N, Paese K, Eifler-Lima VL, Pohlmann AR, Guterres SS, Garcia SC (2019) Melatonin-loaded lipid-core nanocapsules protect against lipid peroxidation caused by paraquat through increased SOD expression in Caenorhabditis elegans. BMC Pharmacol Toxicol 20(1):1–7. https://doi.org/10.1186/s40360-019-0352-4

    Article  CAS  Google Scholar 

  43. Sun Q, Guo Y, Ma S, Yuan J, An S, Li J (2012) Dietary mineral sources altered lipid and antioxidant profiles in broiler breeders and post hatch growth of their offsprings. Biol Trace Elem Res 145(3):318–324. https://doi.org/10.1007/s12011-011-9196-5

    Article  CAS  PubMed  Google Scholar 

  44. Mateos R, Lecumberri E, Ramos S, Goya L, Bravo L (2005) Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B 827(1):76–82. https://doi.org/10.1016/j.jchromb.2005.06.035

    Article  CAS  Google Scholar 

  45. Liu ZH, Lu L, Wang RL, Lei HL, Li SF, Zhang LY, Luo XG (2015) Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poult Sci 94(11):2686–2694. https://doi.org/10.3382/ps/pev251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fathi M (2016) Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iran J Appl Anim Sci 6(2):389–394

    CAS  Google Scholar 

  47. Brugger D, Windisch WM (2016) Subclinical zinc deficiency impairs pancreatic digestive enzyme activity and digestive capacity of weaned piglets. Br J Nutr 116(3):425–433. https://doi.org/10.1017/S0007114516002105

    Article  CAS  PubMed  Google Scholar 

  48. Hu CH, Qian ZC, Song J, Luan ZS, Zuo AY (2013) Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poult Sci 92(1):143–150. https://doi.org/10.3382/ps.2012-02250

    Article  CAS  PubMed  Google Scholar 

  49. Park BC, Jung DY, Kang SY, Ko YH, Ha DM, Kwon CH, Park MJ, Han JH, Jang I, Lee CY (2015) Effects of dietary supplementation of a zinc oxide product encapsulated with lipid on growth performance, intestinal morphology, and digestive enzyme activities in weanling pigs. Anim Feed Sci Technol 200:112–117. https://doi.org/10.1016/j.anifeedsci.2014.11.016

    Article  CAS  Google Scholar 

  50. Lü J, Combs JGF (1988) Effect of excess dietary zinc on pancreatic exocrine function in the chick. J Nutr 118:681–689

    Article  Google Scholar 

  51. Hafez A, Hegazi SM, Bakr AA, Shishtawy HE (2017) Effect of zinc oxide nanoparticles on growth performance and absorptive capacity of the intestinal villi in broiler chickens. Life Sci J 14:67–72

    Google Scholar 

  52. Szabó J, Hegedus M, Bruckner G, Kósa E, Andrasofszky E, Berta E (2004) Large doses of zinc oxide increases the activity of hydrolases in rats. J Nutr Biochem 15(4):206–209. https://doi.org/10.1016/j.jnutbio.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  53. Tang ZG, Chen GY, Li LF, Wen C, Wang T, Zhou YM (2015) Effect of zinc-bearing zeolite clinoptilolite on growth performance, zinc accumulation, and gene expression of zinc transporters in broilers. J Anim Sci 93(2):620–626. https://doi.org/10.2527/jas.2014-8165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No.116073-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinJu Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Hosseindoust, A., Kim, K. et al. Improved Growth Performance, Antioxidant Status, Digestive Enzymes, Nutrient Digestibility and Zinc Bioavailability of Broiler Chickens with Nano-Sized Hot-Melt Extruded Zinc Sulfate. Biol Trace Elem Res 200, 1321–1330 (2022). https://doi.org/10.1007/s12011-021-02747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02747-6

Keywords

Navigation