Abstract
The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements’ intake on the modulation of psychological functioning is reviewed.
Similar content being viewed by others
Data Availability
Not applicable.
References
Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367
Alexopoulos GS (2005) Depression in the elderly. Lancet 365:1961–1970
Tandon R, Gaebel W, Barch DM et al (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150:3–10
Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72:267–284
Georgieff MK, Brunette KE, Tran PV (2015) Early life nutrition and neural plasticity. Dev Psychopathol 27:411–423
Bale TL, Baram TZ, Brown AS et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319
Dawson SL, Dash SR, Jacka FN (2016) The importance of diet and gut health to the treatment and prevention of mental disorders. Int Rev Neurobiol 131:325–346
Shayganfard M (2020) Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 10:128
Yui K (2016) Editorial: new therapeutic targets for autism spectrum disorders. CNS Neurol Disord Drug Targets 15:529–532
Wada O (2004) What are trace elements ?-Their deficiency and excess states. JMAJ 47:351–358
Janka Z (2019) Tracing trace elements in mental functions. Ideggyogy Sz 72:367–379
Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99:836–843
Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590
Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168:404–410
Iglesias P, Selgas R, Romero S, Diez JJ (2013) Selenium and kidney disease. J Nephrol 26:266–272
Alasfar F, Ben-Nakhi M, Khoursheed M, Kehinde EO, Alsaleh M (2011) Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes Surg 21:1710–1713
Whanger P (2001) Selenium and the brain: a review. Nutr Neurosci 4:81–97
Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta (BBA)-Gen Subj 966:12–21
Castaño A, Ayala A, Rodriguez-Gómez JA, Herrera AJ, Cano J, Machado A (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555
Weber G, Maertens P, Meng X, Pippenger C (1991) Glutathione peroxidase deficiency and childhood seizures. Lancet 337:1443–1444
Ramaekers VT, Calomme M, Berghe DV, Makropoulos W (1994) Selenium deficiency triggering intractable seizures. Neuropediatrics 25:217–223
Berr C, Balansard B, Arnaud J, Roussel AM, Alpérovitch A, Group ES (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291
Corrigan F, Reynolds G, Ward N (1991) Reductions of zinc and selenium in brain in Alzheimer’s disease. J Trace Elem Med Biol 8:1–5
Halliwell B, Gutteridge JM (1985) Oxygen radicals and the nervous system. Trends Neurosci 8:22–26
Raygan F, Ostadmohammadi V, Asemi Z (2019) The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38:1594–1598
Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19:1–17
Launer L, Kalmijn S (1998) Anti-oxidants and cognitive function: a review of clinical and epidemiologic studies Ageing and Dementia. Springer, pp 1–8
Smith JW, Evans AT, Costall B, Smythe JW (2002) Thyroid hormones, brain function and cognition: a brief review. BBA-GEN Subj 26:45–60
Jurowski K, Szewczyk B, Nowak G, Piekoszewski W (2014) Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J Biol Inorg Chem 19:1069–1079
Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:693–701
Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63:1029–1049
Maserejian NN, Hall SA, McKinlay JB (2012) Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. J Affect Disord 136:781–788
Tucker SB, Schroeter AL, Brown PW Jr, McCall JT (1976) Acquired zinc deficiency. Cutaneous manifestations typical of acrodermatitis enteropathica. Jama 235:2399–2402
Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update. Pharmacol Rep 57:713–718
Huang EP (1997) Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci U S A 94:13386–13387
Chen N, Moshaver A, Raymond LA (1997) Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 51:1015–1023
Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238
Kalappa BI, Anderson CT, Goldberg JM, Lippard SJ, Tzounopoulos T (2015) AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A 112:15749–15754
Marchetti C (2014) Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 27:1097–1113
Satała G, Duszyńska B, Stachowicz K et al (2016) Concentration-dependent dual mode of Zn action at serotonin 5-HT1A receptors: in vitro and in vivo studies. Mol Neurobiol 53:6869–6881
Szewczyk B, Pałucha-Poniewiera A, Poleszak E, Pilc A, Nowak G (2012) Investigational NMDA receptor modulators for depression. Expert Opin Investig Drugs 21:91–102
Veran J, Kumar J, Pinheiro PS et al (2012) Zinc potentiates GluK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface. Neuron 76:565–578
Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148
Gao HL, Zheng W, Xin N et al (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16:416–425
Pfaender S, Föhr K, Lutz AK et al (2016) Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plast 2016:3760702
Takeda A, Tamano H, Ogawa T et al (2012) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226:259–264
Jokinen J, Nordström P (2009) HPA axis hyperactivity and attempted suicide in young adult mood disorder inpatients. J Affect Disord 116:117–120
Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468
Mlyniec K (2015) Zinc in the glutamatergic theory of depression. Curr Neuropharmacol 13:505–513
Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21
Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behaviour. Behav Pharmacol 18:391–418
Rashidi AA, Salehi M, Piroozmand A, Sagheb MM (2009) Effects of zinc supplementation on serum zinc and C-reactive protein concentrations in hemodialysis patients. J Ren Nutr 19:475–478
Bao B, Prasad AS, Beck FW et al (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91:1634–1641
Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186
Köhler-Forsberg O, Buttenschøn HN, Tansey KE et al (2017) Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav Immun 62:344–350
Mansour SA, Mossa A-TH (2009) Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 93:34–39
Irmisch G, Schlaefke D, Richter J (2010) Zinc and fatty acids in depression. Neurochem Res 35:1376–1383
Sowa-Kućma M, Styczeń K, Siwek M et al (2018) lipid peroxidation and immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox Res 33:448–460
Pittenger C, Sanacora G, Krystal JH (2007) The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurol Disord Drug Targets 6:101–115
Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93
Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26:268–298
Liu T, Lu QB, Yan L et al (2015) Comparative study on serum levels of 10 trace elements in schizophrenia. PLoS One 10:e0133622
Cabral Pinto MMS, Marinho-Reis P, Almeida A et al (2019) Links between cognitive status and trace element levels in hair for an environmentally exposed population: a case study in the surroundings of the Estarreja Industrial Area. Int J Environ Res Public Health 16
Dunner DL (2012) Differentiation of various forms of depression. Shanghai Arch Psychiatry 24:290–291
Stys PK, You H, Zamponi GW (2012) Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol 590:1357–1368
Guilarte TR, Chen MK (2007) Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. Neurotoxicology 28:1147–1152
Stuke H, Hellweg R, Bermpohl F (2012) The development of depression: the role of brain-derived neurotrophic factor. Nervenarzt 83:869–877
Russo AJ (2010) Increased Serum Cu/Zn SOD in individuals with clinical depression normalizes after zinc and anti-oxidant therapy. Nutr Metab Insights 3:37–42
Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411
Kaplan BJ, Crawford SG, Field CJ, Simpson JS (2007) Vitamins, minerals, and mood. Psychol Bull 133:747–760
Saito N, Nishiyama S (2005) Aging and magnesium. Clin Calcium 15:29–36
Altura BM, Altura BT (1996) Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Investig Suppl 224:211–234
Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M (2004) Ionized magnesium in erythrocytes--the best magnesium parameter to observe hypo- or hypermagnesemia. Clin Chim Acta 349:67–73
King DE, Mainous AG 3rd, Geesey ME, Woolson RF (2005) Dietary magnesium and C-reactive protein levels. J Am Coll Nutr 24:166–171
Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226
Eby GA, Eby KL (2006) Rapid recovery from major depression using magnesium treatment. Med Hypotheses 67:362–370
Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatr Clin Neurosci 9:471–481
Redlich R, Opel N, Bürger C et al (2018) The limbic system in youth depression: brain structural and functional alterations in adolescent in-patients with severe depression. NPP 43:546–554
Peng D, Shi F, Li G et al (2015) Surface vulnerability of cerebral cortex to major depressive disorder. PLoS One 10:e0120704
Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330:604–605
Coan EJ, Collingridge GL (1985) Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett 53:21–26
Ghafari M, Whittle N, Miklósi AG et al (2015) Dietary magnesium restriction reduces amygdala-hypothalamic GluN1 receptor complex levels in mice. Brain Struct Funct 220:2209–2221
Pochwat B, Szewczyk B, Sowa-Kucma M et al (2014) Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits. Int J Neuropsychopharmacol 17:393–405
Murck H (2013) Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 47:955–965
Mark LP, Prost RW, Ulmer JL et al (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824
Ehlert U, Gaab J, Heinrichs M (2001) Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamus-pituitary-adrenal axis. Biol Psychol 57:141–152
Guerry JD, Hastings PD (2011) In search of HPA axis dysregulation in child and adolescent depression. Clin Child Fam Psychol Rev 14:135–160
Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128
Uno H, Eisele S, Sakai A et al (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28:336–348
Kelly JR, Borre Y, C OB, et al. (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118
Dinan TG, Cryan JF (2013) Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 25:713–719
Pachikian BD, Neyrinck AM, Deldicque L et al (2010) Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J Nutr 140:509–514
Winther G, Pyndt Jørgensen BM, Elfving B et al (2015) Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour. Acta Neuropsychiatr 27:168–176
Dibaba DT, Xun P, He K (2014) Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr 68:510–516
Chacko SA, Song Y, Nathan L et al (2010) Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 33:304–310
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741
Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34
Kiecolt-Glaser JK, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172:1075–1091
Cardoso CC, Lobato KR, Binfaré RW et al (2009) Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuro-Psychopharmacol Biol Psychiatry 33:235–242
Poleszak E (2007) Modulation of antidepressant-like activity of magnesium by serotonergic system. J Neural Transm (Vienna) 114:1129–1134
Pochwat B, Sowa-Kucma M, Kotarska K, Misztak P, Nowak G, Szewczyk B (2015) Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway. Psychopharmacology 232:355–367
Billyard AJ, Eggett DL, Franz KB (2006) Dietary magnesium deficiency decreases plasma melatonin in rats. Magnes Res 19:157–161
Sani G, Vöhringer PA, Napoletano F et al (2014) Koukopoulos' diagnostic criteria for mixed depression: a validation study. J Affect Disord 164:14–18
Young EA (1998) Sex differences and the HPA axis: implications for psychiatric disease. J Gend Specif Med 1:21–27
Stroud LR, Salovey P, Epel ES (2002) Sex differences in stress responses: social rejection versus achievement stress. Biol Psychiatry 52:318–327
Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710
Schüle C (2007) Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol 19:213–226
Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119:887–897
Modell S, Yassouridis A, Huber J, Holsboer F (1997) Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology 65:216–222
Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H (2003) Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60:24–28
McGowan PO, Sasaki A, D'Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348
Nemeroff CB, Widerlöv E, Bissette G et al (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344
Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444
Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 45:577–579
Nemeroff CB (1996) The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1:336–342
Holsboer F, Ising M (2008) Central CRH system in depression and anxiety--evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357
Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56
Loftis JM, Hauser P (2004) The phenomenology and treatment of interferon-induced depression. J Affect Disord 82:175–190
Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902
Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N (2006) Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 21:227–231
Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68
Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry 45:54–63
Neumeister A, Konstantinidis A, Stastny J et al (2002) Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioural responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 59:613–620
Neumeister A, Nugent AC, Waldeck T et al (2004) Neural and behavioural responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 61:765–773
Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. NPP 29:1765–1781
Drevets WC, Frank E, Price JC et al (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387
Neumeister A, Bain E, Nugent AC et al (2004) Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 24:589–591
Hasler G, Bonwetsch R, Giovacchini G et al (2007) 5-HT1A receptor binding in temporal lobe epilepsy patients with and without major depression. Biol Psychiatry 62:1258–1264
Dell'Osso L, Carmassi C, Mucci F, Marazziti D (2016) Depression, serotonin and tryptophan. Curr Pharm Des 22:949–954
Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216
Zhang X, Gainetdinov RR, Beaulieu JM et al (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16
Nutt DJ (2006) The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 67(Suppl 6):3–8
Goldberg JF, Burdick KE, Endick CJ (2004) Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 161:564–566
Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57:787–793
Meyer JH, Krüger S, Wilson AA et al (2001) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12:4121–4125
Santamaría J, Tolosa E, Valles A (1986) Parkinson's disease with depression: a possible subgroup of idiopathic parkinsonism. Neurology 36:1130–1133
Hasler G, Fromm S, Carlson PJ et al (2008) Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry 65:521–531
Hasler G, Luckenbaugh DA, Snow J et al (2009) Reward processing after catecholamine depletion in unmedicated, remitted subjects with major depressive disorder. Biol Psychiatry 66:201–205
Murphy FC, Michael A, Robbins TW, Sahakian BJ (2003) Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 33:455–467
Kessing LV, Hansen MG, Andersen PK, Angst J (2004) The predictive effect of episodes on the risk of recurrence in depressive and bipolar disorders - a life-long perspective. Acta Psychiatr Scand 109:339–344
Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518
Hasler G, Fromm S, Alvarez RP, Luckenbaugh DA, Drevets WC, Grillon C (2007) Cerebral blood flow in immediate and sustained anxiety. J Neurosci 27:6313–6319
Frodl TS, Koutsouleris N, Bottlender R et al (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65:1156–1165
Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093
Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200
Hasler G, van der Veen JW, Grillon C, Drevets WC, Shen J (2010) Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry 167:1226–1231
Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R (2006) Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 84:244–254
Zarate CA Jr, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864
Kendell SF, Krystal JH, Sanacora G (2005) GABA and glutamate systems as therapeutic targets in depression and mood disorders. Expert Opin Ther Targets 9:153–168
Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 33:70–75
Soares-Weiser K, Maayan N, Bergman H et al (2015) First rank symptoms for schizophrenia. Cochrane Database Syst Rev 1:Cd010653
Wyatt RJ, Alexander RC, Egan MF, Kirch DG (1988) Schizophrenia, just the facts. What do we know, how well do we know it? Schizophr Res 1:3–18
Walther S (2015) Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res 233:293–298
Morrens M, Hulstijn W, Sabbe B (2007) Psychomotor slowing in schizophrenia. Schizophr Bull 33:1038–1053
Lehoux C, Everett J, Laplante L et al (2003) Fine motor dexterity is correlated to social functioning in schizophrenia. Schizophr Res 62:269–273
Tripathi A, Kar SK, Shukla R (2018) Cognitive deficits in schizophrenia: understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci 16:7–17
Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138:70–78
Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. NPP 40:190–206
Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17:1228–1238
Woo TU (2014) Neurobiology of schizophrenia onset. Curr Top Behav Neurosci 16:267–295
Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 35:549–562
Li P, Snyder GL, Vanover KE (2016) Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem 16:3385–3403
Miller DD (2004) Atypical antipsychotics: sleep, sedation, and efficacy. Prim Care Companion J Clin Psychiatry 6:3–7
Hirvonen J, Hietala J (2011) Dysfunctional brain networks and genetic risk for schizophrenia: specific neurotransmitter systems. CNS Neurosci Ther 17:89–96
Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910
Bendik L-A, Spicer-White F (2021) The untold perspective: parents' experiences of the autism spectrum disorder assessment process when the child did not receive a diagnosis. Autism. 12:13623613211003741
Welberg L (2011) Autism: the importance of getting the dose right. Nat Rev Neurosci 12:429
Iossifov I, Ronemus M, Levy D et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–299
Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907
Levy D, Ronemus M, Yamrom B et al (2011) Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70:886–897
Sanders SJ, Ercan-Sencicek AG, Hus V et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–885
Bernier R, Golzio C, Xiong B et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158:263–276
Zhan Y, Paolicelli RC, Sforazzini F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behaviour. Nat Neurosci 17:400–406
Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14:281–292
Román GC, Ghassabian A, Bongers-Schokking JJ et al (2013) Association of gestational maternal hypothyroxinemia and increased autism risk. Ann Neurol 74:733–742
He Q, Duan Y, Karsch K, Miles J (2010) Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res 183:126–132
Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137:1813–1829
Zielinski BA, Prigge MB, Nielsen JA et al (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137:1799–1812
Ecker C, Murphy D (2014) Neuroimaging in autism--from basic science to translational research. Nat Rev Neurol 10:82–91
Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 24:1894–1905
Mišić B, Doesburg SM, Fatima Z et al (2015) Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb Cortex 25:2815–2827
Mostofsky SH, Ewen JB (2011) Altered connectivity and action model formation in autism is autism. Neuroscientist 17:437–448
Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313
Verly M, Verhoeven J, Zink I et al (2014) Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 35:3602–3615
Schipul SE, Williams DL, Keller TA, Minshew NJ, Just MA (2012) Distinctive neural processes during learning in autism. Cereb Cortex 22:937–950
Dinstein I, Pierce K, Eyler L et al (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225
Anderson JS, Druzgal TJ, Froehlich A et al (2011) Decreased interhemispheric functional connectivity in autism. Cereb Cortex 21:1134–1146
Eilam-Stock T, Xu P, Cao M et al (2014) Abnormal autonomic and associated brain activities during rest in autism spectrum disorder. Brain 137:153–171
Nair A, Treiber JM, Shukla DK, Shih P, Müller R-A (2013) Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 136:1942–1955
Thapar A, Cooper M, Rutter M (2017) Neurodevelopmental disorders. Lancet Psychiatry 4:339–346
Paykel E, Andrade LH, Njenga F, Phillips MR (2012) Changes needed in the classification of depressive disorders: options for ICD-11. World Psychiatry 11:37–42
Bürgy M (2019) Phenomenology of obsessive-compulsive disorder: a methodologically structured overview. Psychopathology 52:174–183
Lally J, Maloudi S, Krivoy A, Murphy KC (2019) Simple schizophrenia: a forgotten diagnosis in psychiatry. J Nerv Ment Dis 207:721–725
Kirkpatrick B, Miller B, García-Rizo C, Fernandez-Egea E (2014) Schizophrenia: a systemic disorder. Clin Schizophr Relat Psychoses 8:73–79
Miller JN, Black DW (2019) Schizoaffective disorder: a review. Ann Clin Psychiatry 31:47–53
Nakajima T (2003) [Schizotypal disorder(ICD-10)]. Ryoikibetsu Shokogun Shirizu 84–88
Muñoz-Negro JE, Cervilla JA (2017) The comprehensive treatment of delusional disorder. Rev Psiquiatr Salud Ment 10:221–223
Malhotra S (2007) Acute and transient psychosis: a paradigmatic approach. Indian J Psychiatry 49:233–243
Spiegel D, Lewis-Fernández R, Lanius R, Vermetten E, Simeon D, Friedman M (2013) Dissociative disorders in DSM-5. Annu Rev Clin Psychol 9:299–326
Gureje O, Reed GM (2016) Bodily distress disorder in ICD-11: problems and prospects. World Psychiatry 15:291–292
Yarnell S, Li L, MacGrory B, Trevisan L, Kirwin P (2020) Substance use disorders in later life: a review and synthesis of the literature of an emerging public health concern. Am J Geriatr Psychiatry 28:226–236
Baskin-Sommers AR, Foti D (2015) Abnormal reward functioning across substance use disorders and major depressive disorder: considering reward as a transdiagnostic mechanism. Int J Psychophysiol 98:227–239
Kraus SW, Krueger RB, Briken P et al (2018) Compulsive sexual behaviour disorder in the ICD-11. World Psychiatry 17:109–110
Stein DJ, Billieux J, Bowden-Jones H et al (2018) Balancing validity, utility and public health considerations in disorders due to addictive behaviours. World Psychiatry 17:363–364
McLaughlin KA, Green JG, Hwang I, Sampson NA, Zaslavsky AM, Kessler RC (2012) Intermittent explosive disorder in the National Comorbidity Survey Replication Adolescent Supplement. Arch Gen Psychiatry 69:1131–1139
Hamilton SS, Armando J (2008) Oppositional defiant disorder. Am Fam Physician 78:861–866
Silberg J, Moore AA, Rutter M (2015) Age of onset and the subclassification of conduct/dissocial disorder. J Child Psychol Psychiatry 56:826–833
Guerdjikova AI, Mori N, Casuto LS, McElroy SL (2017) Binge eating disorder. Psychiatr Clin North Am 40:255–266
Zimmerman J, Fisher M (2017) Avoidant/Restrictive Food Intake Disorder (ARFID). Curr Probl Pediatr Adolesc Health Care 47:95–103
Bach B, Sellbom M, Kongerslev M, Simonsen E, Krueger RF, Mulder R (2017) Deriving ICD-11 personality disorder domains from dsm-5 traits: initial attempt to harmonize two diagnostic systems. Acta Psychiatr Scand 136:108–117
Reed GM (2018) Progress in developing a classification of personality disorders for ICD-11. World Psychiatry 17:227–229
Reed GM, Drescher J, Krueger RB et al (2016) Disorders related to sexuality and gender identity in the ICD-11: revising the ICD-10 classification based on current scientific evidence, best clinical practices, and human rights considerations. World Psychiatry 15:205–221
Gaebel W, Jessen F, Kanba S (2018) Neurocognitive disorders in ICD-11: the debate and its outcome. World Psychiatry 17:229–230
Casaril AM, Domingues M, de Andrade LD et al (2019) Depression- and anxiogenic-like behaviours induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioural, neurochemical and computational insights involving the serotonergic system. J Psychiatr Res 115:1–12
Domingues M, Casaril AM, Birmann PT et al (2019) Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviours and biological changes in mice. Behav Brain Res 366:96–107
Turan E, Karaaslan O (2020) The relationship between iodine and selenium levels with anxiety and depression in patients with euthyroid nodular goiter. Oman Med J 35:e161
Hajianfar H, Mollaghasemi N, Tavakoly R, Campbell MS, Mohtashamrad M, Arab A (2020) The association between dietary zinc intake and health status, including mental health and sleep quality, among Iranian female students. Biol Trace Elem Res 199:1754–1761
Cavalcanti CL, Gonçalves MCR, Alves AF et al (2019) Antidepressant, anxiolytic and neuroprotective activities of two zinc compounds in diabetic rats. Front Neurosci 13:1411
Anbari-Nogyni Z, Bidaki R, Madadizadeh F et al (2020) Relationship of zinc status with depression and anxiety among elderly population. Clin Nutr ESPEN 37:233–239
Casaril AM, Domingues M, Bampi SR et al (2019) The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behaviour induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology 236:2867–2880
Ghimire S, Baral BK, Feng D, Sy FS, Rodriguez R (2019) Is selenium intake associated with the presence of depressive symptoms among US adults? Findings from National Health and Nutrition Examination Survey (NHANES) 2011-2014. Nutrition 62:169–176
Bampi SR, Casaril AM, Sabedra Sousa FS et al (2019) Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol Biochem Behav 183:46–55
Jin Y, Coad J, Pond R, Kim N, Brough L (2020) Selenium intake and status of postpartum women and postnatal depression during the first year after childbirth in New Zealand - Mother and Infant Nutrition Investigation (MINI) study. J Trace Elem Med Biol 61:126503
Rafało-Ulińska A, Poleszak E, Szopa A et al (2020) Imipramine influences body distribution of supplemental zinc which may enhance antidepressant action. Nutrients 12
Liu X, Zhong S, Li Z et al (2020) Serum copper and zinc levels correlate with biochemical metabolite ratios in the prefrontal cortex and lentiform nucleus of patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 99:109828
Twayej AJ, Al-Hakeim HK, Al-Dujaili AH, Maes M (2020) Lowered zinc and copper levels in drug-naïve patients with major depression: effects of antidepressants, ketoprofen and immune activation. World J Biol Psychiatry 21:127–138
Famitafreshi H, Karimian M (2019) Modulation of catalase, copper and zinc in the hippocampus and the prefrontal cortex in social isolation-induced depression in male rats. Acta Neurobiol Exp (Wars) 79:184–192
Othman H, Ammari M, Lassoued A, Sakly M, Abdelmelek H (2019) Zinc improves clomipramine effects on depressive and locomotor behaviour and reverses its oxidative stress in rats. Behav Brain Res 374:112122
Gonoodi K, Moslem A, Ahmadnezhad M et al (2018) Relationship of dietary and serum zinc with depression score in Iranian adolescent girls. Biol Trace Elem Res 186:91–97
Sun C, Wang R, Li Z, Zhang D (2019) Dietary magnesium intake and risk of depression. J Affect Disord 246:627–632
Tarleton EK, Kennedy AG, Rose GL, Crocker A, Littenberg B (2019) The association between serum magnesium levels and depression in an adult primary care population. Nutrients 11
Pouteau E, Kabir-Ahmadi M, Noah L et al (2018) Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: a randomized, single-blind clinical trial. PLoS One 13:e0208454
Anjom-Shoae J, Sadeghi O, Hassanzadeh Keshteli A, Afshar H, Esmaillzadeh A, Adibi P (2018) The association between dietary intake of magnesium and psychiatric disorders among Iranian adults: a cross-sectional study. Br J Nutr 120:693–702
Li Z, Wang G, Zhong S et al (2020) Alleviation of cognitive deficits and high copper levels by an NMDA receptor antagonist in a rat depression model. Compr Psychiatry 102:152200
Mravunac M, Szymlek-Gay EA, Daly RM, et al. (2019) Greater circulating copper concentrations and copper/zinc ratios are associated with lower psychological distress, but not cognitive performance, in a sample of Australian older adults. Nutrients 11
Ullas Kamath S, Chaturvedi A, Bhaskar Yerrapragada D, Kundapura N, Amin N, Devaramane V (2019) Increased levels of acetylcholinesterase, paraoxonase 1, and copper in patients with moderate depression- a preliminary study. Rep Biochem Mol Biol 7:174–180
Zhang W, Zhou Y, Li Q et al (2019) Brain iron deposits in thalamus is an independent factor for depressive symptoms based on quantitative susceptibility mapping in an older adults community population. Front Psychiatry 10:734
Campbell RK, Tamayo-Ortiz M, Cantoral A et al (2020) Maternal prenatal psychosocial stress and prepregnancy BMI associations with fetal iron status. Curr Dev Nutr 4:nzaa018
Doom JR, Gahagan S, Caballero G, Encina P, Lozoff B (2019) Infant iron deficiency, iron supplementation, and psychosocial stress as predictors of neurocognitive development in Chilean adolescents. Nutr Neurosci 1–10
Dama M, Van Lieshout RJ, Mattina G, Steiner M (2018) Iron deficiency and risk of maternal depression in pregnancy: an observational study. J Obstet Gynaecol Can 40:698–703
Shafi M, Taufiq F, Mehmood H, Afsar S, Badar A (2018) Relation between depressive disorder and iron deficiency anemia among adults reporting to a secondary healthcare facility: a hospital-based case control study. J Coll Physicians Surg Pak 28:456–559
Portugal-Nunes C, Castanho TC, Amorim L, et al. (2020) Iron status is associated with mood, cognition, and functional ability in older adults: a cross-sectional study. Nutrients 12
Bergis D, Tessmer L, Badenhoop K (2019) Iron deficiency in long standing type 1 diabetes mellitus and its association with depression and impaired quality of life. Diabetes Res Clin Pract 151:74–81
Knyszyńska A, Radecka A, Zabielska P, Łuczak J, Karakiewicz B, Lubkowska A (2020) The role of iron metabolism in fatigue, depression, and quality of life in multiple sclerosis patients. Int J Environ Res Public Health 17
Wassef A, Nguyen QD, St-André M (2019) Anaemia and depletion of iron stores as risk factors for postpartum depression: a literature review. J Psychosom Obstet Gynaecol 40:19–28
Lang UE, Beglinger C, Schweinfurth N, Walter M, Borgwardt S (2015) Nutritional aspects of depression. Cell Physiol Biochem 37:1029–1043
Wang J, Um P, Dickerman BA, Liu J (2018) Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications. Nutrients 10
Anderson RA, Polansky MM, Bryden NA, Bhathena SJ, Canary JJ (1987) Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 36:351–355
Sylvia LG, Peters AT, Deckersbach T, Nierenberg AA (2013) Nutrient-based therapies for bipolar disorder: a systematic review. Psychother Psychosom 82:10–19
Amann BL, Mergl R, Vieta E et al (2007) A 2-year, open-label pilot study of adjunctive chromium in patients with treatment-resistant rapid-cycling bipolar disorder. J Clin Psychopharmacol 27:104–106
Attenburrow MJ, Williams C, Odontiadis J et al (2003) The effect of a nutritional source of tryptophan on dieting-induced changes in brain 5-HT function. Psychol Med 33:1381–1386
Młyniec K, Davies CL, de Agüero Sánchez IG, Pytka K, Budziszewska B, Nowak G (2014) Essential elements in depression and anxiety. Part I. Pharmacol Rep 66:534–544
Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31:761–777
Błażewicz A, Szymańska I, Dolliver W et al (2020) Are obese patients with autism spectrum disorder more likely to be selenium deficient? Research Findings on Pre- and Post-Pubertal Children. Nutrients 12
El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H (2017) Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 32:1073–1080
Fluegge Ba K (2017) Zinc and copper metabolism and risk of autism: a reply to Sayehmiri et al. Iran J Child Neurol 11:66–69
Paudel R, Raj K, Gupta YK, Singh S (2020) Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox Res 37:815–826
Shih PY, Hsieh BY, Lin MH et al (2020) CTTNBP2 controls synaptic expression of zinc-related autism-associated proteins and regulates synapse formation and autism-like behaviours. Cell Rep 31:107700
Fourie C, Vyas Y, Lee K, Jung Y, Garner CC, Montgomery JM (2018) Dietary zinc supplementation prevents autism related behaviours and striatal synaptic dysfunction in Shank3 Exon 13-16 mutant mice. Front Cell Neurosci 12:374
Vyas Y, Lee K, Jung Y, Montgomery JM (2020) Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain 13:110
Deshpande RR, Dungarwal PP, Bagde KK, Thakur PS, Gajjar PM, Kamath AP (2019) Comparative evaluation of salivary zinc concentration in autistic and healthy children in mixed dentition age group-pilot study. Indian J Dent Res 30:43–46
Meguid NA, Bjørklund G, Gebril OH et al (2019) The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 119:577–583
Grabrucker S, Haderspeck JC, Sauer AK et al (2017) Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci 10:450
Bakian AV, Bilder DA, Korgenski EK, Bonkowsky JL (2018) Autism spectrum disorder and neonatal serum magnesium levels in preterm infants. Child Neurol Open 5:2329048x18800566
Skalny AV, Mazaletskaya AL, Ajsuvakova OP et al (2020) Magnesium status in children with attention-deficit/hyperactivity disorder and/or autism spectrum disorder. Soa Chongsonyon Chongsin Uihak 31:41–45
Gunes S, Ekinci O, Celik T (2017) Iron deficiency parameters in autism spectrum disorder: clinical correlates and associated factors. Ital J Pediatr 43:86
Tang S, Xu Y, Liu X et al (2020) Quantitative susceptibility mapping shows lower brain iron content in children with autism. Eur Radiol 31:2073–2083
Reynolds AM, Connolly HV, Katz T et al (2020) Randomized, placebo-controlled trial of ferrous sulfate to treat insomnia in children with autism spectrum disorders. Pediatr Neurol 104:30–39
Tseng PT, Cheng YS, Chen YW et al (2018) Peripheral iron levels in children with autism spectrum disorders vs controls: a systematic review and meta-analysis. Nutr Res 50:44–52
Chau EJ, Mostaid MS, Cropley V et al (2018) Downregulation of plasma SELENBP1 protein in patients with recent-onset schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 85:1–6
Udawela M, Money TT, Neo J et al (2015) SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia. Transl Psychiatry 5:e615
Vidović B, Dorđević B, Milovanović S et al (2013) Selenium, zinc, and copper plasma levels in patients with schizophrenia: relationship with metabolic risk factors. Biol Trace Elem Res 156:22–28
Camacho-Abrego I, González-Cano SI, Aguilar-Alonso P, Brambila E, la Cruz F, Flores G (2020) Changes in nitric oxide, zinc and metallothionein levels in limbic regions at pre-pubertal and post-pubertal ages presented in an animal model of schizophrenia. J Chem Neuroanat 111:101889
Alizadeh F, Davoodian N, Kazemi H, Ghasemi-Kasman M, Shaerzadeh F (2020) Prenatal zinc supplementation attenuates lipopolysaccharide-induced behavioural impairments in maternal immune activation model. Behav Brain Res 377:112247
Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I et al (2019) Prenatal immune challenge induces behavioural deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience 406:594–605
Joe P, Petrilli M, Malaspina D, Weissman J (2018) Zinc in schizophrenia: a meta-analysis. Gen Hosp Psychiatry 53:19–24
Schoonover KE, Queern SL, Lapi SE, Roberts RC (2020) Impaired copper transport in schizophrenia results in a copper-deficient brain state: a new side to the dysbindin story. World J Biol Psychiatry 21:13–28
Schoonover KE, McMeekin LJ, Farmer CB et al (2020) Interactions between knockout of schizophrenia risk factor Dysbindin-1 and copper metabolism in mice. Brain Res Bull 164:339–349
Ordak M, Matras J, Muszynska E, Nasierowski T, Bujalska-Zadrozny M (2017) Magnesium in schizophrenia. Pharmacol Rep 69:929–934
Owiredu W, Brenya PK, Osei Y et al (2019) Evaluation of serum iron overload, AST:ALT ratio and log(10)ferritin:AST ratio among schizophrenia patients in the Kumasi Metropolis, Ghana: a case-control study. BMC Res Notes 12:802
Famitafreshi H, Karimian M (2020) Paradoxical regulation of iron in hippocampus and prefrontal cortex induces schizophrenic-like symptoms in male rats. Int J Neurosci 130:384–390
Kim SW, Stewart R, Park WY et al (2018) Latent iron deficiency as a marker of negative symptoms in patients with first-episode schizophrenia spectrum disorder. Nutrients 10
Acknowledgements
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
MS contributed in conception, design, and drafting of the manuscript.
Corresponding author
Ethics declarations
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Competing Interests
The author declares no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 200, 1032–1059 (2022). https://doi.org/10.1007/s12011-021-02733-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-021-02733-y