Skip to main content

Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives

Abstract

The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements’ intake on the modulation of psychological functioning is reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

Not applicable.

References

  1. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    CAS  PubMed  Google Scholar 

  2. Alexopoulos GS (2005) Depression in the elderly. Lancet 365:1961–1970

    PubMed  Google Scholar 

  3. Tandon R, Gaebel W, Barch DM et al (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150:3–10

    PubMed  Google Scholar 

  4. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72:267–284

    PubMed  Google Scholar 

  5. Georgieff MK, Brunette KE, Tran PV (2015) Early life nutrition and neural plasticity. Dev Psychopathol 27:411–423

    PubMed  PubMed Central  Google Scholar 

  6. Bale TL, Baram TZ, Brown AS et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319

    PubMed  PubMed Central  Google Scholar 

  7. Dawson SL, Dash SR, Jacka FN (2016) The importance of diet and gut health to the treatment and prevention of mental disorders. Int Rev Neurobiol 131:325–346

    CAS  PubMed  Google Scholar 

  8. Shayganfard M (2020) Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 10:128

    PubMed  PubMed Central  Google Scholar 

  9. Yui K (2016) Editorial: new therapeutic targets for autism spectrum disorders. CNS Neurol Disord Drug Targets 15:529–532

    CAS  PubMed  Google Scholar 

  10. Wada O (2004) What are trace elements ?-Their deficiency and excess states. JMAJ 47:351–358

    Google Scholar 

  11. Janka Z (2019) Tracing trace elements in mental functions. Ideggyogy Sz 72:367–379

    PubMed  Google Scholar 

  12. Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99:836–843

    CAS  PubMed  Google Scholar 

  13. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    CAS  PubMed  Google Scholar 

  14. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  PubMed  Google Scholar 

  15. Bleys J, Navas-Acien A, Guallar E (2008) Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med 168:404–410

    CAS  PubMed  Google Scholar 

  16. Iglesias P, Selgas R, Romero S, Diez JJ (2013) Selenium and kidney disease. J Nephrol 26:266–272

    CAS  PubMed  Google Scholar 

  17. Alasfar F, Ben-Nakhi M, Khoursheed M, Kehinde EO, Alsaleh M (2011) Selenium is significantly depleted among morbidly obese female patients seeking bariatric surgery. Obes Surg 21:1710–1713

    PubMed  Google Scholar 

  18. Whanger P (2001) Selenium and the brain: a review. Nutr Neurosci 4:81–97

    CAS  PubMed  Google Scholar 

  19. Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta (BBA)-Gen Subj 966:12–21

    CAS  Google Scholar 

  20. Castaño A, Ayala A, Rodriguez-Gómez JA, Herrera AJ, Cano J, Machado A (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555

    PubMed  Google Scholar 

  21. Weber G, Maertens P, Meng X, Pippenger C (1991) Glutathione peroxidase deficiency and childhood seizures. Lancet 337:1443–1444

    CAS  PubMed  Google Scholar 

  22. Ramaekers VT, Calomme M, Berghe DV, Makropoulos W (1994) Selenium deficiency triggering intractable seizures. Neuropediatrics 25:217–223

    CAS  PubMed  Google Scholar 

  23. Berr C, Balansard B, Arnaud J, Roussel AM, Alpérovitch A, Group ES (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291

    CAS  PubMed  Google Scholar 

  24. Corrigan F, Reynolds G, Ward N (1991) Reductions of zinc and selenium in brain in Alzheimer’s disease. J Trace Elem Med Biol 8:1–5

    CAS  Google Scholar 

  25. Halliwell B, Gutteridge JM (1985) Oxygen radicals and the nervous system. Trends Neurosci 8:22–26

    CAS  Google Scholar 

  26. Raygan F, Ostadmohammadi V, Asemi Z (2019) The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38:1594–1598

    CAS  PubMed  Google Scholar 

  27. Mahadik SP, Mukherjee S (1996) Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr Res 19:1–17

    CAS  PubMed  Google Scholar 

  28. Launer L, Kalmijn S (1998) Anti-oxidants and cognitive function: a review of clinical and epidemiologic studies Ageing and Dementia. Springer, pp 1–8

  29. Smith JW, Evans AT, Costall B, Smythe JW (2002) Thyroid hormones, brain function and cognition: a brief review. BBA-GEN Subj 26:45–60

    CAS  Google Scholar 

  30. Jurowski K, Szewczyk B, Nowak G, Piekoszewski W (2014) Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J Biol Inorg Chem 19:1069–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:693–701

    CAS  Google Scholar 

  32. Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63:1029–1049

    CAS  PubMed  Google Scholar 

  33. Maserejian NN, Hall SA, McKinlay JB (2012) Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. J Affect Disord 136:781–788

    CAS  PubMed  Google Scholar 

  34. Tucker SB, Schroeter AL, Brown PW Jr, McCall JT (1976) Acquired zinc deficiency. Cutaneous manifestations typical of acrodermatitis enteropathica. Jama 235:2399–2402

    CAS  PubMed  Google Scholar 

  35. Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update. Pharmacol Rep 57:713–718

    CAS  PubMed  Google Scholar 

  36. Huang EP (1997) Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci U S A 94:13386–13387

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen N, Moshaver A, Raymond LA (1997) Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol Pharmacol 51:1015–1023

    CAS  PubMed  Google Scholar 

  38. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    CAS  PubMed  Google Scholar 

  39. Kalappa BI, Anderson CT, Goldberg JM, Lippard SJ, Tzounopoulos T (2015) AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A 112:15749–15754

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marchetti C (2014) Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 27:1097–1113

    CAS  PubMed  Google Scholar 

  41. Satała G, Duszyńska B, Stachowicz K et al (2016) Concentration-dependent dual mode of Zn action at serotonin 5-HT1A receptors: in vitro and in vivo studies. Mol Neurobiol 53:6869–6881

    PubMed  Google Scholar 

  42. Szewczyk B, Pałucha-Poniewiera A, Poleszak E, Pilc A, Nowak G (2012) Investigational NMDA receptor modulators for depression. Expert Opin Investig Drugs 21:91–102

    CAS  PubMed  Google Scholar 

  43. Veran J, Kumar J, Pinheiro PS et al (2012) Zinc potentiates GluK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface. Neuron 76:565–578

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    CAS  PubMed  Google Scholar 

  45. Gao HL, Zheng W, Xin N et al (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16:416–425

    CAS  PubMed  Google Scholar 

  46. Pfaender S, Föhr K, Lutz AK et al (2016) Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plast 2016:3760702

    PubMed  PubMed Central  Google Scholar 

  47. Takeda A, Tamano H, Ogawa T et al (2012) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226:259–264

    CAS  PubMed  Google Scholar 

  48. Jokinen J, Nordström P (2009) HPA axis hyperactivity and attempted suicide in young adult mood disorder inpatients. J Affect Disord 116:117–120

    CAS  PubMed  Google Scholar 

  49. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    CAS  PubMed  Google Scholar 

  50. Mlyniec K (2015) Zinc in the glutamatergic theory of depression. Curr Neuropharmacol 13:505–513

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    PubMed  Google Scholar 

  52. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behaviour. Behav Pharmacol 18:391–418

    CAS  PubMed  Google Scholar 

  53. Rashidi AA, Salehi M, Piroozmand A, Sagheb MM (2009) Effects of zinc supplementation on serum zinc and C-reactive protein concentrations in hemodialysis patients. J Ren Nutr 19:475–478

    CAS  PubMed  Google Scholar 

  54. Bao B, Prasad AS, Beck FW et al (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91:1634–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    CAS  PubMed  Google Scholar 

  56. Köhler-Forsberg O, Buttenschøn HN, Tansey KE et al (2017) Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav Immun 62:344–350

    PubMed  Google Scholar 

  57. Mansour SA, Mossa A-TH (2009) Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 93:34–39

    CAS  Google Scholar 

  58. Irmisch G, Schlaefke D, Richter J (2010) Zinc and fatty acids in depression. Neurochem Res 35:1376–1383

    CAS  PubMed  Google Scholar 

  59. Sowa-Kućma M, Styczeń K, Siwek M et al (2018) lipid peroxidation and immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox Res 33:448–460

    PubMed  Google Scholar 

  60. Pittenger C, Sanacora G, Krystal JH (2007) The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurol Disord Drug Targets 6:101–115

    CAS  PubMed  Google Scholar 

  61. Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93

    CAS  PubMed  Google Scholar 

  62. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Asp Med 26:268–298

    CAS  Google Scholar 

  63. Liu T, Lu QB, Yan L et al (2015) Comparative study on serum levels of 10 trace elements in schizophrenia. PLoS One 10:e0133622

    PubMed  PubMed Central  Google Scholar 

  64. Cabral Pinto MMS, Marinho-Reis P, Almeida A et al (2019) Links between cognitive status and trace element levels in hair for an environmentally exposed population: a case study in the surroundings of the Estarreja Industrial Area. Int J Environ Res Public Health 16

  65. Dunner DL (2012) Differentiation of various forms of depression. Shanghai Arch Psychiatry 24:290–291

    PubMed  PubMed Central  Google Scholar 

  66. Stys PK, You H, Zamponi GW (2012) Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders. J Physiol 590:1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guilarte TR, Chen MK (2007) Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. Neurotoxicology 28:1147–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stuke H, Hellweg R, Bermpohl F (2012) The development of depression: the role of brain-derived neurotrophic factor. Nervenarzt 83:869–877

    CAS  PubMed  Google Scholar 

  69. Russo AJ (2010) Increased Serum Cu/Zn SOD in individuals with clinical depression normalizes after zinc and anti-oxidant therapy. Nutr Metab Insights 3:37–42

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411

    CAS  PubMed  Google Scholar 

  71. Kaplan BJ, Crawford SG, Field CJ, Simpson JS (2007) Vitamins, minerals, and mood. Psychol Bull 133:747–760

    PubMed  Google Scholar 

  72. Saito N, Nishiyama S (2005) Aging and magnesium. Clin Calcium 15:29–36

    PubMed  Google Scholar 

  73. Altura BM, Altura BT (1996) Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand J Clin Lab Investig Suppl 224:211–234

    CAS  Google Scholar 

  74. Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M (2004) Ionized magnesium in erythrocytes--the best magnesium parameter to observe hypo- or hypermagnesemia. Clin Chim Acta 349:67–73

    CAS  PubMed  Google Scholar 

  75. King DE, Mainous AG 3rd, Geesey ME, Woolson RF (2005) Dietary magnesium and C-reactive protein levels. J Am Coll Nutr 24:166–171

    CAS  PubMed  Google Scholar 

  76. Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226

    PubMed  PubMed Central  Google Scholar 

  77. Eby GA, Eby KL (2006) Rapid recovery from major depression using magnesium treatment. Med Hypotheses 67:362–370

    CAS  PubMed  Google Scholar 

  78. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatr Clin Neurosci 9:471–481

    CAS  Google Scholar 

  79. Redlich R, Opel N, Bürger C et al (2018) The limbic system in youth depression: brain structural and functional alterations in adolescent in-patients with severe depression. NPP 43:546–554

    Google Scholar 

  80. Peng D, Shi F, Li G et al (2015) Surface vulnerability of cerebral cortex to major depressive disorder. PLoS One 10:e0120704

    PubMed  PubMed Central  Google Scholar 

  81. Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330:604–605

    CAS  PubMed  Google Scholar 

  82. Coan EJ, Collingridge GL (1985) Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett 53:21–26

    CAS  PubMed  Google Scholar 

  83. Ghafari M, Whittle N, Miklósi AG et al (2015) Dietary magnesium restriction reduces amygdala-hypothalamic GluN1 receptor complex levels in mice. Brain Struct Funct 220:2209–2221

    CAS  PubMed  Google Scholar 

  84. Pochwat B, Szewczyk B, Sowa-Kucma M et al (2014) Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits. Int J Neuropsychopharmacol 17:393–405

    CAS  PubMed  Google Scholar 

  85. Murck H (2013) Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 47:955–965

    PubMed  Google Scholar 

  86. Mark LP, Prost RW, Ulmer JL et al (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ehlert U, Gaab J, Heinrichs M (2001) Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamus-pituitary-adrenal axis. Biol Psychol 57:141–152

  88. Guerry JD, Hastings PD (2011) In search of HPA axis dysregulation in child and adolescent depression. Clin Child Fam Psychol Rev 14:135–160

    PubMed  PubMed Central  Google Scholar 

  89. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    CAS  PubMed  Google Scholar 

  90. Uno H, Eisele S, Sakai A et al (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28:336–348

    CAS  PubMed  Google Scholar 

  91. Kelly JR, Borre Y, C OB, et al. (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118

    PubMed  Google Scholar 

  92. Dinan TG, Cryan JF (2013) Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 25:713–719

    CAS  PubMed  Google Scholar 

  93. Pachikian BD, Neyrinck AM, Deldicque L et al (2010) Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J Nutr 140:509–514

    CAS  PubMed  Google Scholar 

  94. Winther G, Pyndt Jørgensen BM, Elfving B et al (2015) Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour. Acta Neuropsychiatr 27:168–176

    PubMed  Google Scholar 

  95. Dibaba DT, Xun P, He K (2014) Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur J Clin Nutr 68:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chacko SA, Song Y, Nathan L et al (2010) Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 33:304–310

    CAS  PubMed  Google Scholar 

  97. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kiecolt-Glaser JK, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry 172:1075–1091

    PubMed  PubMed Central  Google Scholar 

  100. Cardoso CC, Lobato KR, Binfaré RW et al (2009) Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuro-Psychopharmacol Biol Psychiatry 33:235–242

    CAS  Google Scholar 

  101. Poleszak E (2007) Modulation of antidepressant-like activity of magnesium by serotonergic system. J Neural Transm (Vienna) 114:1129–1134

    CAS  Google Scholar 

  102. Pochwat B, Sowa-Kucma M, Kotarska K, Misztak P, Nowak G, Szewczyk B (2015) Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway. Psychopharmacology 232:355–367

    CAS  PubMed  Google Scholar 

  103. Billyard AJ, Eggett DL, Franz KB (2006) Dietary magnesium deficiency decreases plasma melatonin in rats. Magnes Res 19:157–161

    CAS  PubMed  Google Scholar 

  104. Sani G, Vöhringer PA, Napoletano F et al (2014) Koukopoulos' diagnostic criteria for mixed depression: a validation study. J Affect Disord 164:14–18

    PubMed  Google Scholar 

  105. Young EA (1998) Sex differences and the HPA axis: implications for psychiatric disease. J Gend Specif Med 1:21–27

    CAS  PubMed  Google Scholar 

  106. Stroud LR, Salovey P, Epel ES (2002) Sex differences in stress responses: social rejection versus achievement stress. Biol Psychiatry 52:318–327

    PubMed  Google Scholar 

  107. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710

    CAS  PubMed  Google Scholar 

  108. Schüle C (2007) Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol 19:213–226

    PubMed  Google Scholar 

  109. Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119:887–897

    CAS  PubMed  Google Scholar 

  110. Modell S, Yassouridis A, Huber J, Holsboer F (1997) Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology 65:216–222

    CAS  PubMed  Google Scholar 

  111. Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H (2003) Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60:24–28

    CAS  PubMed  Google Scholar 

  112. McGowan PO, Sasaki A, D'Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nemeroff CB, Widerlöv E, Bissette G et al (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    CAS  PubMed  Google Scholar 

  114. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    CAS  PubMed  Google Scholar 

  115. Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 45:577–579

    CAS  PubMed  Google Scholar 

  116. Nemeroff CB (1996) The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1:336–342

    CAS  PubMed  Google Scholar 

  117. Holsboer F, Ising M (2008) Central CRH system in depression and anxiety--evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357

    CAS  PubMed  Google Scholar 

  118. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Loftis JM, Hauser P (2004) The phenomenology and treatment of interferon-induced depression. J Affect Disord 82:175–190

    CAS  PubMed  Google Scholar 

  120. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N (2006) Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 21:227–231

    PubMed  Google Scholar 

  122. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    CAS  PubMed  Google Scholar 

  123. Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry 45:54–63

    CAS  Google Scholar 

  124. Neumeister A, Konstantinidis A, Stastny J et al (2002) Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioural responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 59:613–620

    CAS  PubMed  Google Scholar 

  125. Neumeister A, Nugent AC, Waldeck T et al (2004) Neural and behavioural responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 61:765–773

    CAS  PubMed  Google Scholar 

  126. Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. NPP 29:1765–1781

    CAS  Google Scholar 

  127. Drevets WC, Frank E, Price JC et al (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387

    CAS  PubMed  Google Scholar 

  128. Neumeister A, Bain E, Nugent AC et al (2004) Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 24:589–591

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hasler G, Bonwetsch R, Giovacchini G et al (2007) 5-HT1A receptor binding in temporal lobe epilepsy patients with and without major depression. Biol Psychiatry 62:1258–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dell'Osso L, Carmassi C, Mucci F, Marazziti D (2016) Depression, serotonin and tryptophan. Curr Pharm Des 22:949–954

    CAS  PubMed  Google Scholar 

  131. Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    CAS  PubMed  Google Scholar 

  132. Zhang X, Gainetdinov RR, Beaulieu JM et al (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16

    CAS  PubMed  Google Scholar 

  133. Nutt DJ (2006) The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry 67(Suppl 6):3–8

    CAS  PubMed  Google Scholar 

  134. Goldberg JF, Burdick KE, Endick CJ (2004) Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 161:564–566

    PubMed  Google Scholar 

  135. Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57:787–793

    CAS  PubMed  Google Scholar 

  136. Meyer JH, Krüger S, Wilson AA et al (2001) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12:4121–4125

    CAS  PubMed  Google Scholar 

  137. Santamaría J, Tolosa E, Valles A (1986) Parkinson's disease with depression: a possible subgroup of idiopathic parkinsonism. Neurology 36:1130–1133

    PubMed  Google Scholar 

  138. Hasler G, Fromm S, Carlson PJ et al (2008) Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry 65:521–531

    PubMed  PubMed Central  Google Scholar 

  139. Hasler G, Luckenbaugh DA, Snow J et al (2009) Reward processing after catecholamine depletion in unmedicated, remitted subjects with major depressive disorder. Biol Psychiatry 66:201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Murphy FC, Michael A, Robbins TW, Sahakian BJ (2003) Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 33:455–467

    CAS  PubMed  Google Scholar 

  141. Kessing LV, Hansen MG, Andersen PK, Angst J (2004) The predictive effect of episodes on the risk of recurrence in depressive and bipolar disorders - a life-long perspective. Acta Psychiatr Scand 109:339–344

    CAS  PubMed  Google Scholar 

  142. Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    PubMed  Google Scholar 

  143. Hasler G, Fromm S, Alvarez RP, Luckenbaugh DA, Drevets WC, Grillon C (2007) Cerebral blood flow in immediate and sustained anxiety. J Neurosci 27:6313–6319

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Frodl TS, Koutsouleris N, Bottlender R et al (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65:1156–1165

    PubMed  Google Scholar 

  145. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    CAS  PubMed  Google Scholar 

  146. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    CAS  PubMed  Google Scholar 

  147. Hasler G, van der Veen JW, Grillon C, Drevets WC, Shen J (2010) Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry 167:1226–1231

    PubMed  PubMed Central  Google Scholar 

  148. Eser D, Schüle C, Baghai TC, Romeo E, Rupprecht R (2006) Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 84:244–254

    CAS  PubMed  Google Scholar 

  149. Zarate CA Jr, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    CAS  PubMed  Google Scholar 

  150. Kendell SF, Krystal JH, Sanacora G (2005) GABA and glutamate systems as therapeutic targets in depression and mood disorders. Expert Opin Ther Targets 9:153–168

    CAS  PubMed  Google Scholar 

  151. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 33:70–75

    CAS  Google Scholar 

  152. Soares-Weiser K, Maayan N, Bergman H et al (2015) First rank symptoms for schizophrenia. Cochrane Database Syst Rev 1:Cd010653

    PubMed  Google Scholar 

  153. Wyatt RJ, Alexander RC, Egan MF, Kirch DG (1988) Schizophrenia, just the facts. What do we know, how well do we know it? Schizophr Res 1:3–18

    CAS  PubMed  Google Scholar 

  154. Walther S (2015) Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res 233:293–298

    PubMed  Google Scholar 

  155. Morrens M, Hulstijn W, Sabbe B (2007) Psychomotor slowing in schizophrenia. Schizophr Bull 33:1038–1053

    PubMed  Google Scholar 

  156. Lehoux C, Everett J, Laplante L et al (2003) Fine motor dexterity is correlated to social functioning in schizophrenia. Schizophr Res 62:269–273

    PubMed  Google Scholar 

  157. Tripathi A, Kar SK, Shukla R (2018) Cognitive deficits in schizophrenia: understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci 16:7–17

    PubMed  PubMed Central  Google Scholar 

  158. Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138:70–78

    CAS  PubMed  Google Scholar 

  159. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. NPP 40:190–206

    Google Scholar 

  160. Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17:1228–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Woo TU (2014) Neurobiology of schizophrenia onset. Curr Top Behav Neurosci 16:267–295

    PubMed  PubMed Central  Google Scholar 

  162. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 35:549–562

    PubMed  PubMed Central  Google Scholar 

  163. Li P, Snyder GL, Vanover KE (2016) Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem 16:3385–3403

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Miller DD (2004) Atypical antipsychotics: sleep, sedation, and efficacy. Prim Care Companion J Clin Psychiatry 6:3–7

    PubMed  PubMed Central  Google Scholar 

  165. Hirvonen J, Hietala J (2011) Dysfunctional brain networks and genetic risk for schizophrenia: specific neurotransmitter systems. CNS Neurosci Ther 17:89–96

    PubMed  Google Scholar 

  166. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910

    PubMed  Google Scholar 

  167. Bendik L-A, Spicer-White F (2021) The untold perspective: parents' experiences of the autism spectrum disorder assessment process when the child did not receive a diagnosis. Autism. 12:13623613211003741

    Google Scholar 

  168. Welberg L (2011) Autism: the importance of getting the dose right. Nat Rev Neurosci 12:429

    CAS  PubMed  Google Scholar 

  169. Iossifov I, Ronemus M, Levy D et al (2012) De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Levy D, Ronemus M, Yamrom B et al (2011) Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70:886–897

    CAS  PubMed  Google Scholar 

  172. Sanders SJ, Ercan-Sencicek AG, Hus V et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–885

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bernier R, Golzio C, Xiong B et al (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158:263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhan Y, Paolicelli RC, Sforazzini F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behaviour. Nat Neurosci 17:400–406

    CAS  PubMed  Google Scholar 

  175. Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14:281–292

    PubMed  PubMed Central  Google Scholar 

  176. Román GC, Ghassabian A, Bongers-Schokking JJ et al (2013) Association of gestational maternal hypothyroxinemia and increased autism risk. Ann Neurol 74:733–742

    PubMed  Google Scholar 

  177. He Q, Duan Y, Karsch K, Miles J (2010) Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res 183:126–132

    PubMed  PubMed Central  Google Scholar 

  178. Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137:1813–1829

    PubMed  PubMed Central  Google Scholar 

  179. Zielinski BA, Prigge MB, Nielsen JA et al (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137:1799–1812

    PubMed  PubMed Central  Google Scholar 

  180. Ecker C, Murphy D (2014) Neuroimaging in autism--from basic science to translational research. Nat Rev Neurol 10:82–91

    PubMed  Google Scholar 

  181. Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 24:1894–1905

    PubMed  Google Scholar 

  182. Mišić B, Doesburg SM, Fatima Z et al (2015) Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb Cortex 25:2815–2827

    PubMed  Google Scholar 

  183. Mostofsky SH, Ewen JB (2011) Altered connectivity and action model formation in autism is autism. Neuroscientist 17:437–448

    PubMed  PubMed Central  Google Scholar 

  184. Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313

    PubMed  PubMed Central  Google Scholar 

  185. Verly M, Verhoeven J, Zink I et al (2014) Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 35:3602–3615

    PubMed  Google Scholar 

  186. Schipul SE, Williams DL, Keller TA, Minshew NJ, Just MA (2012) Distinctive neural processes during learning in autism. Cereb Cortex 22:937–950

    PubMed  Google Scholar 

  187. Dinstein I, Pierce K, Eyler L et al (2011) Disrupted neural synchronization in toddlers with autism. Neuron 70:1218–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Anderson JS, Druzgal TJ, Froehlich A et al (2011) Decreased interhemispheric functional connectivity in autism. Cereb Cortex 21:1134–1146

    PubMed  Google Scholar 

  189. Eilam-Stock T, Xu P, Cao M et al (2014) Abnormal autonomic and associated brain activities during rest in autism spectrum disorder. Brain 137:153–171

    PubMed  PubMed Central  Google Scholar 

  190. Nair A, Treiber JM, Shukla DK, Shih P, Müller R-A (2013) Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 136:1942–1955

    PubMed  PubMed Central  Google Scholar 

  191. Thapar A, Cooper M, Rutter M (2017) Neurodevelopmental disorders. Lancet Psychiatry 4:339–346

    PubMed  Google Scholar 

  192. Paykel E, Andrade LH, Njenga F, Phillips MR (2012) Changes needed in the classification of depressive disorders: options for ICD-11. World Psychiatry 11:37–42

    Google Scholar 

  193. Bürgy M (2019) Phenomenology of obsessive-compulsive disorder: a methodologically structured overview. Psychopathology 52:174–183

    PubMed  Google Scholar 

  194. Lally J, Maloudi S, Krivoy A, Murphy KC (2019) Simple schizophrenia: a forgotten diagnosis in psychiatry. J Nerv Ment Dis 207:721–725

    PubMed  Google Scholar 

  195. Kirkpatrick B, Miller B, García-Rizo C, Fernandez-Egea E (2014) Schizophrenia: a systemic disorder. Clin Schizophr Relat Psychoses 8:73–79

    PubMed  PubMed Central  Google Scholar 

  196. Miller JN, Black DW (2019) Schizoaffective disorder: a review. Ann Clin Psychiatry 31:47–53

    PubMed  Google Scholar 

  197. Nakajima T (2003) [Schizotypal disorder(ICD-10)]. Ryoikibetsu Shokogun Shirizu 84–88

  198. Muñoz-Negro JE, Cervilla JA (2017) The comprehensive treatment of delusional disorder. Rev Psiquiatr Salud Ment 10:221–223

    PubMed  Google Scholar 

  199. Malhotra S (2007) Acute and transient psychosis: a paradigmatic approach. Indian J Psychiatry 49:233–243

    PubMed  PubMed Central  Google Scholar 

  200. Spiegel D, Lewis-Fernández R, Lanius R, Vermetten E, Simeon D, Friedman M (2013) Dissociative disorders in DSM-5. Annu Rev Clin Psychol 9:299–326

    PubMed  Google Scholar 

  201. Gureje O, Reed GM (2016) Bodily distress disorder in ICD-11: problems and prospects. World Psychiatry 15:291–292

    PubMed  PubMed Central  Google Scholar 

  202. Yarnell S, Li L, MacGrory B, Trevisan L, Kirwin P (2020) Substance use disorders in later life: a review and synthesis of the literature of an emerging public health concern. Am J Geriatr Psychiatry 28:226–236

    PubMed  Google Scholar 

  203. Baskin-Sommers AR, Foti D (2015) Abnormal reward functioning across substance use disorders and major depressive disorder: considering reward as a transdiagnostic mechanism. Int J Psychophysiol 98:227–239

    PubMed  Google Scholar 

  204. Kraus SW, Krueger RB, Briken P et al (2018) Compulsive sexual behaviour disorder in the ICD-11. World Psychiatry 17:109–110

    PubMed  PubMed Central  Google Scholar 

  205. Stein DJ, Billieux J, Bowden-Jones H et al (2018) Balancing validity, utility and public health considerations in disorders due to addictive behaviours. World Psychiatry 17:363–364

    PubMed  PubMed Central  Google Scholar 

  206. McLaughlin KA, Green JG, Hwang I, Sampson NA, Zaslavsky AM, Kessler RC (2012) Intermittent explosive disorder in the National Comorbidity Survey Replication Adolescent Supplement. Arch Gen Psychiatry 69:1131–1139

    PubMed  PubMed Central  Google Scholar 

  207. Hamilton SS, Armando J (2008) Oppositional defiant disorder. Am Fam Physician 78:861–866

    PubMed  Google Scholar 

  208. Silberg J, Moore AA, Rutter M (2015) Age of onset and the subclassification of conduct/dissocial disorder. J Child Psychol Psychiatry 56:826–833

    PubMed  Google Scholar 

  209. Guerdjikova AI, Mori N, Casuto LS, McElroy SL (2017) Binge eating disorder. Psychiatr Clin North Am 40:255–266

    PubMed  Google Scholar 

  210. Zimmerman J, Fisher M (2017) Avoidant/Restrictive Food Intake Disorder (ARFID). Curr Probl Pediatr Adolesc Health Care 47:95–103

    PubMed  Google Scholar 

  211. Bach B, Sellbom M, Kongerslev M, Simonsen E, Krueger RF, Mulder R (2017) Deriving ICD-11 personality disorder domains from dsm-5 traits: initial attempt to harmonize two diagnostic systems. Acta Psychiatr Scand 136:108–117

    CAS  PubMed  Google Scholar 

  212. Reed GM (2018) Progress in developing a classification of personality disorders for ICD-11. World Psychiatry 17:227–229

    PubMed  PubMed Central  Google Scholar 

  213. Reed GM, Drescher J, Krueger RB et al (2016) Disorders related to sexuality and gender identity in the ICD-11: revising the ICD-10 classification based on current scientific evidence, best clinical practices, and human rights considerations. World Psychiatry 15:205–221

    PubMed  PubMed Central  Google Scholar 

  214. Gaebel W, Jessen F, Kanba S (2018) Neurocognitive disorders in ICD-11: the debate and its outcome. World Psychiatry 17:229–230

    PubMed  PubMed Central  Google Scholar 

  215. Casaril AM, Domingues M, de Andrade LD et al (2019) Depression- and anxiogenic-like behaviours induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioural, neurochemical and computational insights involving the serotonergic system. J Psychiatr Res 115:1–12

    PubMed  Google Scholar 

  216. Domingues M, Casaril AM, Birmann PT et al (2019) Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviours and biological changes in mice. Behav Brain Res 366:96–107

    CAS  PubMed  Google Scholar 

  217. Turan E, Karaaslan O (2020) The relationship between iodine and selenium levels with anxiety and depression in patients with euthyroid nodular goiter. Oman Med J 35:e161

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Hajianfar H, Mollaghasemi N, Tavakoly R, Campbell MS, Mohtashamrad M, Arab A (2020) The association between dietary zinc intake and health status, including mental health and sleep quality, among Iranian female students. Biol Trace Elem Res 199:1754–1761

    PubMed  Google Scholar 

  219. Cavalcanti CL, Gonçalves MCR, Alves AF et al (2019) Antidepressant, anxiolytic and neuroprotective activities of two zinc compounds in diabetic rats. Front Neurosci 13:1411

    PubMed  Google Scholar 

  220. Anbari-Nogyni Z, Bidaki R, Madadizadeh F et al (2020) Relationship of zinc status with depression and anxiety among elderly population. Clin Nutr ESPEN 37:233–239

    PubMed  Google Scholar 

  221. Casaril AM, Domingues M, Bampi SR et al (2019) The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behaviour induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology 236:2867–2880

    CAS  PubMed  Google Scholar 

  222. Ghimire S, Baral BK, Feng D, Sy FS, Rodriguez R (2019) Is selenium intake associated with the presence of depressive symptoms among US adults? Findings from National Health and Nutrition Examination Survey (NHANES) 2011-2014. Nutrition 62:169–176

    CAS  PubMed  Google Scholar 

  223. Bampi SR, Casaril AM, Sabedra Sousa FS et al (2019) Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol Biochem Behav 183:46–55

    CAS  PubMed  Google Scholar 

  224. Jin Y, Coad J, Pond R, Kim N, Brough L (2020) Selenium intake and status of postpartum women and postnatal depression during the first year after childbirth in New Zealand - Mother and Infant Nutrition Investigation (MINI) study. J Trace Elem Med Biol 61:126503

    CAS  PubMed  Google Scholar 

  225. Rafało-Ulińska A, Poleszak E, Szopa A et al (2020) Imipramine influences body distribution of supplemental zinc which may enhance antidepressant action. Nutrients 12

  226. Liu X, Zhong S, Li Z et al (2020) Serum copper and zinc levels correlate with biochemical metabolite ratios in the prefrontal cortex and lentiform nucleus of patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 99:109828

    CAS  Google Scholar 

  227. Twayej AJ, Al-Hakeim HK, Al-Dujaili AH, Maes M (2020) Lowered zinc and copper levels in drug-naïve patients with major depression: effects of antidepressants, ketoprofen and immune activation. World J Biol Psychiatry 21:127–138

    PubMed  Google Scholar 

  228. Famitafreshi H, Karimian M (2019) Modulation of catalase, copper and zinc in the hippocampus and the prefrontal cortex in social isolation-induced depression in male rats. Acta Neurobiol Exp (Wars) 79:184–192

    Google Scholar 

  229. Othman H, Ammari M, Lassoued A, Sakly M, Abdelmelek H (2019) Zinc improves clomipramine effects on depressive and locomotor behaviour and reverses its oxidative stress in rats. Behav Brain Res 374:112122

    CAS  PubMed  Google Scholar 

  230. Gonoodi K, Moslem A, Ahmadnezhad M et al (2018) Relationship of dietary and serum zinc with depression score in Iranian adolescent girls. Biol Trace Elem Res 186:91–97

    CAS  PubMed  Google Scholar 

  231. Sun C, Wang R, Li Z, Zhang D (2019) Dietary magnesium intake and risk of depression. J Affect Disord 246:627–632

    CAS  PubMed  Google Scholar 

  232. Tarleton EK, Kennedy AG, Rose GL, Crocker A, Littenberg B (2019) The association between serum magnesium levels and depression in an adult primary care population. Nutrients 11

  233. Pouteau E, Kabir-Ahmadi M, Noah L et al (2018) Superiority of magnesium and vitamin B6 over magnesium alone on severe stress in healthy adults with low magnesemia: a randomized, single-blind clinical trial. PLoS One 13:e0208454

    PubMed  PubMed Central  Google Scholar 

  234. Anjom-Shoae J, Sadeghi O, Hassanzadeh Keshteli A, Afshar H, Esmaillzadeh A, Adibi P (2018) The association between dietary intake of magnesium and psychiatric disorders among Iranian adults: a cross-sectional study. Br J Nutr 120:693–702

    CAS  PubMed  Google Scholar 

  235. Li Z, Wang G, Zhong S et al (2020) Alleviation of cognitive deficits and high copper levels by an NMDA receptor antagonist in a rat depression model. Compr Psychiatry 102:152200

    PubMed  Google Scholar 

  236. Mravunac M, Szymlek-Gay EA, Daly RM, et al. (2019) Greater circulating copper concentrations and copper/zinc ratios are associated with lower psychological distress, but not cognitive performance, in a sample of Australian older adults. Nutrients 11

  237. Ullas Kamath S, Chaturvedi A, Bhaskar Yerrapragada D, Kundapura N, Amin N, Devaramane V (2019) Increased levels of acetylcholinesterase, paraoxonase 1, and copper in patients with moderate depression- a preliminary study. Rep Biochem Mol Biol 7:174–180

    PubMed  PubMed Central  Google Scholar 

  238. Zhang W, Zhou Y, Li Q et al (2019) Brain iron deposits in thalamus is an independent factor for depressive symptoms based on quantitative susceptibility mapping in an older adults community population. Front Psychiatry 10:734

    PubMed  PubMed Central  Google Scholar 

  239. Campbell RK, Tamayo-Ortiz M, Cantoral A et al (2020) Maternal prenatal psychosocial stress and prepregnancy BMI associations with fetal iron status. Curr Dev Nutr 4:nzaa018

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Doom JR, Gahagan S, Caballero G, Encina P, Lozoff B (2019) Infant iron deficiency, iron supplementation, and psychosocial stress as predictors of neurocognitive development in Chilean adolescents. Nutr Neurosci 1–10

  241. Dama M, Van Lieshout RJ, Mattina G, Steiner M (2018) Iron deficiency and risk of maternal depression in pregnancy: an observational study. J Obstet Gynaecol Can 40:698–703

    PubMed  Google Scholar 

  242. Shafi M, Taufiq F, Mehmood H, Afsar S, Badar A (2018) Relation between depressive disorder and iron deficiency anemia among adults reporting to a secondary healthcare facility: a hospital-based case control study. J Coll Physicians Surg Pak 28:456–559

    PubMed  Google Scholar 

  243. Portugal-Nunes C, Castanho TC, Amorim L, et al. (2020) Iron status is associated with mood, cognition, and functional ability in older adults: a cross-sectional study. Nutrients 12

  244. Bergis D, Tessmer L, Badenhoop K (2019) Iron deficiency in long standing type 1 diabetes mellitus and its association with depression and impaired quality of life. Diabetes Res Clin Pract 151:74–81

    CAS  PubMed  Google Scholar 

  245. Knyszyńska A, Radecka A, Zabielska P, Łuczak J, Karakiewicz B, Lubkowska A (2020) The role of iron metabolism in fatigue, depression, and quality of life in multiple sclerosis patients. Int J Environ Res Public Health 17

  246. Wassef A, Nguyen QD, St-André M (2019) Anaemia and depletion of iron stores as risk factors for postpartum depression: a literature review. J Psychosom Obstet Gynaecol 40:19–28

    PubMed  Google Scholar 

  247. Lang UE, Beglinger C, Schweinfurth N, Walter M, Borgwardt S (2015) Nutritional aspects of depression. Cell Physiol Biochem 37:1029–1043

    CAS  PubMed  Google Scholar 

  248. Wang J, Um P, Dickerman BA, Liu J (2018) Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications. Nutrients 10

  249. Anderson RA, Polansky MM, Bryden NA, Bhathena SJ, Canary JJ (1987) Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 36:351–355

    CAS  PubMed  Google Scholar 

  250. Sylvia LG, Peters AT, Deckersbach T, Nierenberg AA (2013) Nutrient-based therapies for bipolar disorder: a systematic review. Psychother Psychosom 82:10–19

    PubMed  Google Scholar 

  251. Amann BL, Mergl R, Vieta E et al (2007) A 2-year, open-label pilot study of adjunctive chromium in patients with treatment-resistant rapid-cycling bipolar disorder. J Clin Psychopharmacol 27:104–106

    PubMed  Google Scholar 

  252. Attenburrow MJ, Williams C, Odontiadis J et al (2003) The effect of a nutritional source of tryptophan on dieting-induced changes in brain 5-HT function. Psychol Med 33:1381–1386

    CAS  PubMed  Google Scholar 

  253. Młyniec K, Davies CL, de Agüero Sánchez IG, Pytka K, Budziszewska B, Nowak G (2014) Essential elements in depression and anxiety. Part I. Pharmacol Rep 66:534–544

    PubMed  Google Scholar 

  254. Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31:761–777

    CAS  PubMed  Google Scholar 

  255. Błażewicz A, Szymańska I, Dolliver W et al (2020) Are obese patients with autism spectrum disorder more likely to be selenium deficient? Research Findings on Pre- and Post-Pubertal Children. Nutrients 12

  256. El-Ansary A, Bjørklund G, Tinkov AA, Skalny AV, Al Dera H (2017) Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab Brain Dis 32:1073–1080

    CAS  PubMed  Google Scholar 

  257. Fluegge Ba K (2017) Zinc and copper metabolism and risk of autism: a reply to Sayehmiri et al. Iran J Child Neurol 11:66–69

    PubMed  PubMed Central  Google Scholar 

  258. Paudel R, Raj K, Gupta YK, Singh S (2020) Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox Res 37:815–826

    CAS  PubMed  Google Scholar 

  259. Shih PY, Hsieh BY, Lin MH et al (2020) CTTNBP2 controls synaptic expression of zinc-related autism-associated proteins and regulates synapse formation and autism-like behaviours. Cell Rep 31:107700

    CAS  PubMed  Google Scholar 

  260. Fourie C, Vyas Y, Lee K, Jung Y, Garner CC, Montgomery JM (2018) Dietary zinc supplementation prevents autism related behaviours and striatal synaptic dysfunction in Shank3 Exon 13-16 mutant mice. Front Cell Neurosci 12:374

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Vyas Y, Lee K, Jung Y, Montgomery JM (2020) Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain 13:110

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Deshpande RR, Dungarwal PP, Bagde KK, Thakur PS, Gajjar PM, Kamath AP (2019) Comparative evaluation of salivary zinc concentration in autistic and healthy children in mixed dentition age group-pilot study. Indian J Dent Res 30:43–46

    PubMed  Google Scholar 

  263. Meguid NA, Bjørklund G, Gebril OH et al (2019) The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 119:577–583

    PubMed  Google Scholar 

  264. Grabrucker S, Haderspeck JC, Sauer AK et al (2017) Brain lateralization in mice is associated with zinc signaling and altered in prenatal zinc deficient mice that display features of autism spectrum disorder. Front Mol Neurosci 10:450

    PubMed  Google Scholar 

  265. Bakian AV, Bilder DA, Korgenski EK, Bonkowsky JL (2018) Autism spectrum disorder and neonatal serum magnesium levels in preterm infants. Child Neurol Open 5:2329048x18800566

    PubMed  PubMed Central  Google Scholar 

  266. Skalny AV, Mazaletskaya AL, Ajsuvakova OP et al (2020) Magnesium status in children with attention-deficit/hyperactivity disorder and/or autism spectrum disorder. Soa Chongsonyon Chongsin Uihak 31:41–45

    PubMed  PubMed Central  Google Scholar 

  267. Gunes S, Ekinci O, Celik T (2017) Iron deficiency parameters in autism spectrum disorder: clinical correlates and associated factors. Ital J Pediatr 43:86

    PubMed  PubMed Central  Google Scholar 

  268. Tang S, Xu Y, Liu X et al (2020) Quantitative susceptibility mapping shows lower brain iron content in children with autism. Eur Radiol 31:2073–2083

    PubMed  Google Scholar 

  269. Reynolds AM, Connolly HV, Katz T et al (2020) Randomized, placebo-controlled trial of ferrous sulfate to treat insomnia in children with autism spectrum disorders. Pediatr Neurol 104:30–39

    PubMed  Google Scholar 

  270. Tseng PT, Cheng YS, Chen YW et al (2018) Peripheral iron levels in children with autism spectrum disorders vs controls: a systematic review and meta-analysis. Nutr Res 50:44–52

    CAS  PubMed  Google Scholar 

  271. Chau EJ, Mostaid MS, Cropley V et al (2018) Downregulation of plasma SELENBP1 protein in patients with recent-onset schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 85:1–6

    CAS  Google Scholar 

  272. Udawela M, Money TT, Neo J et al (2015) SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia. Transl Psychiatry 5:e615

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Vidović B, Dorđević B, Milovanović S et al (2013) Selenium, zinc, and copper plasma levels in patients with schizophrenia: relationship with metabolic risk factors. Biol Trace Elem Res 156:22–28

    PubMed  Google Scholar 

  274. Camacho-Abrego I, González-Cano SI, Aguilar-Alonso P, Brambila E, la Cruz F, Flores G (2020) Changes in nitric oxide, zinc and metallothionein levels in limbic regions at pre-pubertal and post-pubertal ages presented in an animal model of schizophrenia. J Chem Neuroanat 111:101889

    PubMed  Google Scholar 

  275. Alizadeh F, Davoodian N, Kazemi H, Ghasemi-Kasman M, Shaerzadeh F (2020) Prenatal zinc supplementation attenuates lipopolysaccharide-induced behavioural impairments in maternal immune activation model. Behav Brain Res 377:112247

    PubMed  Google Scholar 

  276. Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I et al (2019) Prenatal immune challenge induces behavioural deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience 406:594–605

    CAS  PubMed  Google Scholar 

  277. Joe P, Petrilli M, Malaspina D, Weissman J (2018) Zinc in schizophrenia: a meta-analysis. Gen Hosp Psychiatry 53:19–24

    PubMed  Google Scholar 

  278. Schoonover KE, Queern SL, Lapi SE, Roberts RC (2020) Impaired copper transport in schizophrenia results in a copper-deficient brain state: a new side to the dysbindin story. World J Biol Psychiatry 21:13–28

    PubMed  Google Scholar 

  279. Schoonover KE, McMeekin LJ, Farmer CB et al (2020) Interactions between knockout of schizophrenia risk factor Dysbindin-1 and copper metabolism in mice. Brain Res Bull 164:339–349

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Ordak M, Matras J, Muszynska E, Nasierowski T, Bujalska-Zadrozny M (2017) Magnesium in schizophrenia. Pharmacol Rep 69:929–934

    CAS  PubMed  Google Scholar 

  281. Owiredu W, Brenya PK, Osei Y et al (2019) Evaluation of serum iron overload, AST:ALT ratio and log(10)ferritin:AST ratio among schizophrenia patients in the Kumasi Metropolis, Ghana: a case-control study. BMC Res Notes 12:802

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Famitafreshi H, Karimian M (2020) Paradoxical regulation of iron in hippocampus and prefrontal cortex induces schizophrenic-like symptoms in male rats. Int J Neurosci 130:384–390

    CAS  PubMed  Google Scholar 

  283. Kim SW, Stewart R, Park WY et al (2018) Latent iron deficiency as a marker of negative symptoms in patients with first-episode schizophrenia spectrum disorder. Nutrients 10

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed in conception, design, and drafting of the manuscript.

Corresponding author

Correspondence to Mehran Shayganfard.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shayganfard, M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 200, 1032–1059 (2022). https://doi.org/10.1007/s12011-021-02733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02733-y

Keywords

  • Trace elements
  • Depression
  • Mental disorders
  • Anxiety
  • Schizophrenia