Skip to main content

Advertisement

Log in

Synthesis of Silver- and Strontium-Substituted Hydroxyapatite with Combined Osteogenic and Antibacterial Activities

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Infection in bone transplantation process is attracting considerable attention. The current study synthesizes silver/strontium co-substituted hydroxyapatite (Ag/Sr-HA) nanoparticles with combined osteogenic and antibacterial activities. Different concentrations of silver-substituted hydroxyapatite (Ag-HA) nanoparticles were synthesized by hydrothermal method, and then their physicochemical properties were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDS). Then, Sr was added as secondary element into Ag-HA to improve the biocompatibility of substrate. The antibacterial experiments indicated that Ag-HA had excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The effects of prepared samples on cell proliferation and differentiation were evaluated using MC3T3-E1 cells in vitro. The results showed that Sr substitution enhanced cell proliferation and differentiation, upregulated expression of osteogenic genes, and induced mineralization of cells. The substitution of Sr in Ag/Sr-HA nanoparticles can effectively alleviate the negative effects of Ag and enhance the biological activity of HA. Thus, the synthesized Ag/Sr-HA nanoparticles will serve as a potential candidate for application of biomedical implants with excellent osteogenic and antibacterial ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Habraken W, Habibovic P, Epple M, Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future. Mater Today 19:69–87. https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  2. Guha AK, Singh S, Kumaresan R, Nayar S, Sinha A (2009) Mesenchymal cell response to nanosized biphasic calcium phosphate composites. Colloids Surf B Biointerfaces 73:146–151. https://doi.org/10.1016/j.colsurfb.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  3. Ruchholtz S, Täger G, Nastkolb D (2004) The infected hip prosthesis. Unfallchirurg 107:307–317. https://doi.org/10.1007/s00113-004-0751-9

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Ding Q, Han S, Yan Y, Pang X (2013) Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci Mater Med 24:1853–1864. https://doi.org/10.1007/s10856-013-4955-9

    Article  CAS  PubMed  Google Scholar 

  5. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339. https://doi.org/10.1016/j.biomaterials.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  6. Anghelina FV, Ungureanu DN, Bratu V, Popescu IN, Rusanescu CO (2013) Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316 L. Appl Surf Sci 285:65–71. https://doi.org/10.1016/j.apsusc.2013.06.102

    Article  CAS  Google Scholar 

  7. Riaz M, Zia R, Saleemi F, Ikram H, Bashir F (2015) In vitro antimicrobial activity of ZnO based glass-ceramics against pathogenic bacteria. J Mater Sci Mater Med 26:268–279. https://doi.org/10.1007/s10856-015-5603-3

    Article  CAS  PubMed  Google Scholar 

  8. Qin Q, Li J, Wang J (2016) Antibacterial activity comparison of three metal oxide nanoparticles and their dissolved metal ions. Water Environ Res 89:378–383. https://doi.org/10.2175/106143017X14839994523262

    Article  Google Scholar 

  9. Gabriel JS, Gonzaga VAM, Poli AL, Schmitt CC (2017) Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohyd Polym 171:202–210. https://doi.org/10.1016/j.carbpol.2017.05.021

    Article  CAS  Google Scholar 

  10. Karbowniczek J, Cordero-Arias L, Virtanen S, Misra SK, Valsami-Jones E, Tuchscherr L, Rutkowski B, Górecki K, Bała P, Czyrska-Filemonowicz A (2017) Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Mater Sci Eng C 77:780–789. https://doi.org/10.1016/j.msec.2017.03.180

    Article  CAS  Google Scholar 

  11. Azeena S, Subhapradha N, Selvamurugan N, Narayan S, Srinivasan N, Murugesan R, Chung TW, Moorthi A (2016) Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater Sci Eng C 71:1156–1165. https://doi.org/10.1016/j.msec.2016.11.1180

    Article  Google Scholar 

  12. Kunkalekar RK, Prabhu MS, Naik MM, Salker AV (2014) Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria. Colloids Surf B Biointerfaces 113:429–434. https://doi.org/10.1016/j.colsurfb.2013.09.036

    Article  CAS  PubMed  Google Scholar 

  13. Peetsch A, Greulich C, Braun D, Stroetges C, Rehage H, Siebers B, Koller M, Epple M (2013) Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf B Biointerfaces 102:724–729. https://doi.org/10.1016/j.colsurfb.2012.09.040

    Article  CAS  PubMed  Google Scholar 

  14. Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241. https://doi.org/10.1016/j.vacuum.2011.06.011

    Article  CAS  Google Scholar 

  15. Gopi D, Shinyjoy E, Kavitha L (2014) Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochim Acta A 127:286–291. https://doi.org/10.1016/j.saa.2014.02.057

    Article  CAS  Google Scholar 

  16. Jin GD, Qin H, Cao HL, Qian S, Zhao YC, Peng XC, Zhang XL, Liu XY, Chu PK (2014) Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 35:7699–7713. https://doi.org/10.1016/j.biomaterials.2014.05.074

    Article  CAS  PubMed  Google Scholar 

  17. Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regí M, Bruni G, Torres-Pardo A, González-Calbet JM, Visai L, Vitale-Brovarone C (2017) Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater 55:493–504. https://doi.org/10.1016/j.actbio.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Rawlinson SC, Hill RG, Fortune F (2016) Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater 32:412–422. https://doi.org/10.1016/j.dental.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  19. Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956. https://doi.org/10.1016/j.biomaterials.2010.01.121

    Article  CAS  PubMed  Google Scholar 

  20. Yang F, Tu J, Yang D, Li G, Cai L, Wang L (2010) Osteogenic differentiation of mesenchymal stem cells could be enhanced by strontium. Eng Med Biol Soc 2010:823–826. https://doi.org/10.1109/IEMBS.2010.5626774

    Article  Google Scholar 

  21. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteopor Int 20:653–664. https://doi.org/10.1007/s00198-008-0728-6

    Article  CAS  Google Scholar 

  22. Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C 72:134–142. https://doi.org/10.1016/j.msec.2016.11.063

    Article  CAS  Google Scholar 

  23. Kheradmandfard M, Fathi MH (2013) Fabrication and characterization of nanocrystalline Mg-substituted fluorapatite by high energy ball milling. Ceram Int 39:1651–1658. https://doi.org/10.1016/j.ceramint.2012.08.007

    Article  CAS  Google Scholar 

  24. Bigi A, Falini G, Foresti E, Gazzano M, Ripmonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr B 52:87–92. https://doi.org/10.1107/S0108768195008615

    Article  Google Scholar 

  25. Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149. https://doi.org/10.1016/j.actbio.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  26. Xiu ZL, Lü MK, Liu SW, Zhou GJ, Su BY, Zhang HP (2005) Barium hydroxyapatite nanoparticles synthesized by citric acid sol–gel combustion method. Mater Res Bull 40:1617–1622. https://doi.org/10.1016/j.materresbull.2005.04.033

    Article  CAS  Google Scholar 

  27. Wang LP, Pathak JL, Liang DL, Zhong NY, Guan HB, Wan MJ, Miao GH, Li ZM, Ge LH (2020) Fabrication and characterization of strontium- hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Sci 142:366–375. https://doi.org/10.1016/j.ijbiomac.2019.09.107

    Article  CAS  Google Scholar 

  28. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S (2012) Mechanical, in vitro antimicrobial and biological properties of plasma sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces 4:1341–1349. https://doi.org/10.1021/am201610q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takaoka S, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2010) The Calcium-sensing Receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm Metab Res 42:627–631. https://doi.org/10.1055/s-0030-1255091

    Article  CAS  PubMed  Google Scholar 

  30. Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336. https://doi.org/10.1002/adma.201300584

    Article  CAS  PubMed  Google Scholar 

  31. Zhao LZ, Wang HR, Huo KF, Zhang XM, Wang W, Zhang YMWZF, Chu PK (2013) The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 34:19–29. https://doi.org/10.1016/j.biomaterials.2012.09.041

    Article  CAS  PubMed  Google Scholar 

  32. Xu K, Chen W, Mu C, Yu Y, Cai K (2017) Strontium folic acid derivative functionalized titanium surfaces for enhanced osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. J Mater Chem B 5:6811–6826. https://doi.org/10.1039/C7TB01529A

    Article  CAS  PubMed  Google Scholar 

  33. Xing M, Wang X, Wang E, Gao L, Chang J (2018) Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomater 72:381–395. https://doi.org/10.1016/j.actbio.2018.03.051

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21471044), the Natural Science Foundation of Hebei Province (B2020201020), the Science and Technology Projects of Hebei Education Department (ZD2020150), the Third Batch of Top Youth Talent Support Program of Hebei Province, the Priority Strategy Project of Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education (ts2019006), Medical Science Foundation of Hebei University (2020A03), and the Post-graduate,s Innovation Fund Project of Hebei University (hbu2020ss012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, W., Han, J. et al. Synthesis of Silver- and Strontium-Substituted Hydroxyapatite with Combined Osteogenic and Antibacterial Activities. Biol Trace Elem Res 200, 931–942 (2022). https://doi.org/10.1007/s12011-021-02697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02697-z

Keywords

Navigation