Skip to main content
Log in

Pollution of Feral Pigeon (Columba livia) Depends on Their Age and Their Health Status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Biomonitoring of synanthropic species provides evidence about effects of the pollution in human environment. In the present study, tibia and tarsometatarsal bones were extracted from feral pigeons (Columba livia), found either deceased, or experimentally captured in the lofts of houses in Bratislava, Slovakia. Concentrations of mercury (tarsometatarsus), lead, iron, and zinc (tibia) were analyzed, along with sex and plumage pattern, wing, and tarsometatarsal length. In order to estimate age, lines of arrested growth (LAGs) were used. Results show no significant differences in heavy metal accumulation depending on sex or plumage pattern. However, age-related tarsometatarsus length was correlated to Hg, Pb, and Fe bone level accumulation. Thus, bigger or older pigeons with longer tarsometatarsal bones had higher Hg, Pb, and Fe concentrations. Higher heavy metal concentrations (mainly Fe and Zn) were also present in bones of older deceased individuals with completed LAG. These findings point to chronic accumulation of heavy metals in feral pigeons during their life in polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available at Institute of High Mountain Biology, University of Žilina.

Code Availability

Not applicable.

References

  1. Montevecchi WA (1993) Birds as bio-indicators in marine and terrestrial ecosystems, in: Hall J, Wadleigh M (eds), The Scientific Challenge of Our Changing Environment: Proceedings of a Conference Addressing Environmental Change in Newfoundland and Labrador and Similar Regions, Held at the Memorial University of Newfoundland, St. John's, 3-5 March 1993, The Royal Society of Canada, pp 60–62.

  2. Janiga M (2001) Birds as bio-indicators of long-transported lead in the alpine environment. In: Global change and protected areas. Springer, Dordrecht, pp 253–259. https://doi.org/10.1007/0-306-48051-4_24

    Chapter  Google Scholar 

  3. Rabaça JE, Godinho C (2008) Birds as bio-indicators of riparian ecosystems. In: Arizpe D, Mendes A, Rabaça JE (eds) Sustainable Riparian Zones-a management guide. Generalitat Valenciana, Spain, pp 157–161

    Google Scholar 

  4. Tansy MF, Roth RP (1970) Pigeons: a new role in air pollution. J Air Pollut Control Assoc 20(5):307–309. https://doi.org/10.1080/00022470.1970.10469406

    Article  CAS  PubMed  Google Scholar 

  5. Jenkins C (1975) Use of the feral pigeon (Columba livia) to monitor atmospheric lead pollution. Comptes rendus hebdomadaires des seances de l'Academie des sciences Serie D: Sciences naturelles 281(16):1187–1189

    CAS  Google Scholar 

  6. Schilderman PA, Hoogewerff JA, van Schooten FJ, Maas LM, Moonen EJ, van Os BJ, van Wijnen JH, Kleinjans JC (1997) Possible relevance of pigeons as an indicator species for monitoring air pollution. Environ Health Perspect 105(3):322–330. https://doi.org/10.1289/ehp.97105322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dmowski K (1999) Birds as bioindicators of heavy metal pollution: review and examples concerning European species. Acta Ornithologica 34(1):1–25

    Google Scholar 

  8. Ohi G, Seki H, Akiyama K, Yagyu H (1974) The pigeon, a sensor of lead pollution. Bull Environ Contam Toxicol 12(1):92–98. https://doi.org/10.1007/BF01713032

    Article  CAS  Google Scholar 

  9. Hutton M (1980) Metal contamination of feral pigeons Columba livia from the London area: part 2—biological effects of lead exposure. Environ Pollut Ser A, Ecol Biol 22(4):281–293. https://doi.org/10.1016/0143-1471(80)90004-5

    Article  CAS  Google Scholar 

  10. Hutton M, Goodman GT (1980) Metal contamination of feral pigeons Columba livia from the London area: part 1—tissue accumulation of lead, cadmium and zinc. Environ Pollut Ser A, Ecol Biol 22(3):207–217. https://doi.org/10.1016/0143-1471(80)90015-X

    Article  CAS  Google Scholar 

  11. Ohi G, Seki H, Minowa K, Ohsawa M, Mizoguchi I, Sugimori F (1981) Lead pollution in Tokyo—the pigeon reflects its amelioration. Environ Res 26(1):125–129. https://doi.org/10.1016/0013-9351(81)90191-2

    Article  CAS  PubMed  Google Scholar 

  12. García MA, Martinez-Conde E, Vazquez IC (1988) Lead levels of feral pigeons (Columba livia) from Madrid (Spain). Environ Pollut 54(2):89–96. https://doi.org/10.1016/0269-7491(88)90139-X

    Article  Google Scholar 

  13. Janiga M, Mankovská B, Bobal'ová M, Ďurčová G (1990) Significance of concentrations of lead, cadmium, and iron in the plumage of the feral pigeon. Arch Environ Contam Toxicol 19(6):892–897. https://doi.org/10.1007/BF01055056

    Article  CAS  Google Scholar 

  14. Loranger S, Demers G, Kennedy G, Forget E, Zayed J (1994) The pigeon (Columbia livia) as a monitor for manganese contamination from motor vehicles. Arch Environ Contam Toxicol 27(3):311–317. https://doi.org/10.1007/BF00213165

    Article  CAS  Google Scholar 

  15. Kim JS, Han SH, Lee DP, Gu TH (2001) Heavy metal contamination of feral pigeons Columba livia by habitat in Seoul. Korean J Ecol 24(5):303–307 http://www.koreascience.or.kr/article/JAKO200111921336964.page

    Google Scholar 

  16. Frantz A, Pottier MA, Karimi B, Corbel H, Aubry E, Haussy C, Gasparini J, Castrec-Rouelle M (2012) Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ Pollut 168:23–28. https://doi.org/10.1016/j.envpol.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  17. Begum A, Sehrin S (2013) Levels of heavy metals in different tissues of pigeon (Columba livia) of Bangladesh for safety assessment for human consumption. Bangladesh Pharm J 16(1):81–87. https://doi.org/10.3329/bpj.v16i1.14499

    Article  Google Scholar 

  18. Kouddane N, Mouhir L, Fekhaoui M, Elabidi A, Bounagua M, Benaakame R (2015) Monitoring of air pollution in the city of Mohammedia (Morocco): level of hepatic accumulation of Pb, Cd and Zn in pigeons (Columba livia). J Environ Sci Toxicol Food Technol 9(4 Ver. II):67–73. https://doi.org/10.9790/2402-09426773

    Article  Google Scholar 

  19. Kouddane N, Mouhir L, Fekhaoui M, Elabidi A, Benaakame R (2016) Monitoring air pollution at Mohammedia (Morocco): Pb, Cd and Zn in the blood of pigeons (Columba livia). Ecotoxicology 25(4):720–726. https://doi.org/10.1007/s10646-016-1631-0

    Article  CAS  PubMed  Google Scholar 

  20. Cai F, Calisi RM (2016) Seasons and neighborhoods of high lead toxicity in New York City: the feral pigeon as a bioindicator. Chemosphere 161:274–279. https://doi.org/10.1016/j.chemosphere.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  21. Sohi GK, Kler TK, Kaur S (2019) Heavy metal contamination in excreta of blue rock pigeon (Columba livia) and Indian peafowl (Pavo cristatus) in rural areas of Punjab. J Anim Res 9(3):425–430. https://doi.org/10.30954/2277-940X.03.2019.6

    Article  Google Scholar 

  22. Romero D, de José A, Theureau JM, Ferrer A, Raigón MD, Torregrosa JB (2020) Lead in terrestrial game birds from Spain. Environ Sci Pollut Res 27(2):1585–1597. https://doi.org/10.1007/s11356-019-06827-y

    Article  CAS  Google Scholar 

  23. Nam DH, Lee DP, Koo TH (2004a) Factors causing variations of lead and cadmium accumulation of feral pigeons (Columba livia). Environ Monit Assess 95(1-3):23–35. https://doi.org/10.1023/B:EMAS.0000029897.90755.e6

    Article  CAS  PubMed  Google Scholar 

  24. Torres J, Foronda P, Eira C, Miquel J, Feliu C (2010) Trace element concentrations in Raillietina micracantha in comparison to its definitive host, the feral pigeon Columba livia in Santa Cruz de Tenerife (Canary Archipelago, Spain). Arch Environ Contam Toxicol 58(1):176–182. https://doi.org/10.1007/s00244-009-9352-5

    Article  CAS  PubMed  Google Scholar 

  25. Johnston RF, Janiga M (1995) Feral pigeons. Oxford University Press, New York

    Google Scholar 

  26. Rose E, Nagel P, Haag-Wackernagel D (2006) Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav Ecol Sociobiol 60(2):242–254. https://doi.org/10.1007/s00265-006-0162-8

    Article  Google Scholar 

  27. Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46(4):263–295. https://doi.org/10.1016/0269-7491(87)90173-4

    Article  CAS  PubMed  Google Scholar 

  28. Nam DH, Lee DP (2006a) Reproductive effects of heavy metal accumulation on breeding feral pigeons (Columba livia). Sci Total Environ 366(2-3):682–687. https://doi.org/10.1016/j.scitotenv.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  29. Castanet J (2006) Time recording in bone microstructures of endothermic animals; functional relationships. C R Palevol 5(3-4):629–636. https://doi.org/10.1016/j.crpv.2005.10.006

    Article  Google Scholar 

  30. Kowalska A (1978) An attempt to determine the age of pigeon (Columba livia var. domestica) by means of counting the bone growth rings. Acta Biologica Cracoviensia 12(2):157–161

    Google Scholar 

  31. Van Soest RWM, Van Utrecht WL (1971) The layered structure of bones of birds as a possible indication of age. Bijdragen tot de Dierkunde 41(1):61–66. https://doi.org/10.1163/26660644-04101008

    Article  Google Scholar 

  32. Angst D, Chinsamy A, Steel L, Hume JP (2017) Bone histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes). Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-08536-3

    Article  CAS  Google Scholar 

  33. Chinsamy A (1995a) Historical perspectives on growth in the birds Struthio camelius and Sagittarius serpentarius. Acta Palaeornithologica. Courier Forschungsinstitut Senckenbergiana 181:317–323

    Google Scholar 

  34. Castanet J, Smirina E (1990) Introduction to the skeletochronological method in amphibians and reptiles. Annales des sciences naturelles. Zoologie et Biologie Animale 11(4):191–196

    Google Scholar 

  35. Chinsamy A (1991) The osteohistology of femoral growth within a clade: a comparison of the crocodile, Crocodylus niloticus, the dinosaurs, Massospondylus and Syntarsus and the birds, Struthio and Sagittarius. Ph.D. dissertation, University of the Witwatersrand, Johannesburg, pp 200

  36. Chinsamy A (1994) Dinosaur bone histology: implications and inferences. Paleontol Soc Spec Publ 7:213–228. https://doi.org/10.1017/S2475262200009539

    Article  Google Scholar 

  37. Chinsamy A, Rubidge B (1993) Dicynodont (Therapsida) bone histology: phylogenetic and physiological implications. Palaeontol Afr 30:97–102 http://hdl.handle.net/10539/16232

    Google Scholar 

  38. Chinsamy A (1997) Assessing the biology of fossil vertebrates through bone histology. Palaeontol Afr 33:29–35 http://hdl.handle.net/10539/16394

    Google Scholar 

  39. Chinsamy A, Chiappe LM, Dodson P (1994) Growth rings in Mesozoic birds. Nature 368:196–197. https://doi.org/10.1038/368196a0

    Article  Google Scholar 

  40. Köhler M, Moyà-Solà S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci 106(48):20354–20358. https://doi.org/10.1073/pnas.0813385106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chinsamy A (1990) Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontol Afr 27:77–82 http://hdl.handle.net/10539/16144

    Google Scholar 

  42. Chinsamy A (1993) Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus (Owen). Mod Geol 18:319–329

    Google Scholar 

  43. Chinsamy A (1995b) Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki. J Vertebr Paleontol 15(1):96–104. https://doi.org/10.1080/02724634.1995.10011209

    Article  Google Scholar 

  44. Chinsamy A, Dodson P (1995) Inside a dinosaur bone. Am Sci 83:174–180

    Google Scholar 

  45. Leahy GD (1991) Lamellar-zonal bone in fossil mammals: implications for dinosaur and therapsid paleophysiology. J Vertebr Paleontol 11:42A

    Google Scholar 

  46. Janiga M (1986) Analysis of some of the conditions of growth of young Columbia livia F. domestica in an urban agglomeration. Folia Zoologica (Brno) 35(3):257–268

    Google Scholar 

  47. Buddhachat K, Klinhom S, Siengdee P, Brown JL, Nomsiri R, Kaewmong P, Thitaram C, Mahakkanukrauh P, Nganvongpanit K (2016) Elemental analysis of bone, teeth, horn and antler in different animal species using non-invasive handheld X-ray fluorescence. PLoS One 11(5):e0155458. https://doi.org/10.1371/journal.pone.0155458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P (2016) Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res 173(1):21–29. https://doi.org/10.1007/s12011-016-0625-3

    Article  CAS  PubMed  Google Scholar 

  49. Kompišová Ballová Z, Korec F, Pinterová K (2020) Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. Environ Sci Pollut Res 16:36411–36426. https://doi.org/10.1007/s11356-020-09654-8

    Article  CAS  Google Scholar 

  50. Conostan Calibration Standard. 316 Stainless Steel Alloy. Innov-X Systems: Waltham, MA, USA, 2011.

  51. NIST SRM 1486 Reed WP (1992): Certificate of analysis standard reference material 1486. Bone Meal. In: Technology NIoS (Hrsg.), Gaithersburg, Maryland

  52. Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. In: Histopathology. Humana Press, New York, NY, pp 31–43. https://doi.org/10.1007/978-1-4939-1050-2_3

    Chapter  Google Scholar 

  53. Janiga M, Žemberyová M (1998) Lead concentration in the bones of the feral pigeons (Columba livia): sources of variation relating to body condition and death. Arch Environ Contam Toxicol 35(1):70–74. https://doi.org/10.1007/s002449900351

    Article  CAS  PubMed  Google Scholar 

  54. Cui J, Wu B, Halbrook RS, Zang S (2013) Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China. Ecotoxicology 22(10):1490–1497. https://doi.org/10.1007/s10646-013-1135-0

    Article  CAS  PubMed  Google Scholar 

  55. Morgan GW, Edens FW, Thaxton P, Parkhurst CR (1975) Toxicity of dietary lead in Japanese quail. Poult Sci 54(5):1636–1642. https://doi.org/10.3382/ps.0541636

    Article  CAS  PubMed  Google Scholar 

  56. Franson JC, Custer TW (1982) Toxicity of dietary lead in young cockerels. Vet Hum Toxicol 24(6):421–423

    CAS  PubMed  Google Scholar 

  57. Custer TW, Franson JC, Pattee OH (1984) Tissue lead distribution and hematologic effects in American kestrels (Falco sparverius L.) fed biologically incorporated lead. J Wildl Dis 20(1):39–43. https://doi.org/10.7589/0090-3558-20.1.39

    Article  CAS  PubMed  Google Scholar 

  58. Hoffman DJ, Franson JC, Pattee OH, Bunck CM, Anderson A (1985) Survival, growth, and accumulation of ingested lead in nestling American kestrels (Falco sparverius). Arch Environ Contam Toxicol 14(1):89–94. https://doi.org/10.1002/tera.1420200315

    Article  CAS  Google Scholar 

  59. Grue CE, Hoffman DJ, Beyer WN, Franson LP (1986) Lead concentrations and reproductive success in European starlings Sturnus vulgaris nesting within highway roadside verges. Environ Pollut Ser A, Ecol Biol 42(2):157–182. https://doi.org/10.1016/0143-1471(86)90005-X

    Article  CAS  Google Scholar 

  60. Nam DH, Lee DP (2006b) Possible routes for lead accumulation in feral pigeons (Columba livia). Environ Monit Assess 121(1-3):355–361. https://doi.org/10.1007/s10661-005-9131-3

    Article  CAS  PubMed  Google Scholar 

  61. Dallinger R, Wieser W (1984) Patterns of accumulation, distribution and liberation of Zn, Cu, Cd and Pb in different organs of the land snail Helix pomatia L. Comp Biochem Physiol C: Comp Pharmacol 79(1):117–124. https://doi.org/10.1016/0742-8413(84)90173-7

    Article  CAS  Google Scholar 

  62. Johnson MS, Pluck H, Hutton M, Moore G (1982) Accumulation and renal effects of lead in urban populations of feral pigeons, Columba livia. Arch Environ Contam Toxicol 11(6):761–767. https://doi.org/10.1007/BF01059165

    Article  CAS  PubMed  Google Scholar 

  63. Kendall RJ, Scanlon PF (1981) Effects of chronic lead ingestion on reproductive characteristics of ringed turtle doves Streptopelia risoria and on tissue lead concentrations of adults and their progeny. Environ Pollut Ser A, Ecol Biol 26(3):203–213. https://doi.org/10.1016/0143-1471(81)90006-4

    Article  CAS  Google Scholar 

  64. Priest ND (1990) The distribution and behavior of heavy metals in the skeleton and body: studies with bone-seeking. In: Priest ND, Van De Vyver FL (eds) Trace metals and fluoride in bones and teeth. CRC Press, Boca Raton, USA, pp 83–140

    Google Scholar 

  65. Hetmański T (2007) The timing of fledging and annual post-fledging survival of juvenile feral pigeons, Columba livia, in a city area (Pomerania, NW Poland). Pol J Ecol 55(2):367–375

    Google Scholar 

  66. Kurhalyuk N, Hetmański T, Antonowicz J, Tkachenko H (2009) Oxidative stress and protein oxidation affected by toxic metals in feral pigeons (Columba livia) from northern Poland. Baltic Coastal Zone 13(1):187–197

    Google Scholar 

  67. Gasparini J, Jacquin L, Laroucau K, Vorimore F, Aubry E, Castrec-Rouëlle M, Frantz A (2014) Relationships between metals exposure and epidemiological parameters of two pathogens in urban pigeons. Bull Environ Contam Toxicol 92(2):208–212. https://doi.org/10.1007/s00128-013-1172-7

    Article  CAS  PubMed  Google Scholar 

  68. Chatelain M, Gasparini J, Jacquin L, Frantz A (2014) The adaptive function of melanin-based plumage coloration to trace metals. Biol Lett 10(3):20140164. https://doi.org/10.1098/rsbl.2014.0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chatelain M, Frantz A, Gasparini J, Leclaire S (2016) Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J Avian Biol 47(4):521–529. https://doi.org/10.1111/jav.00857

    Article  Google Scholar 

  70. Leclaire S, Czirják GÁ, Hammouda A, Gasparini J (2015) Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol Biol 15(1):60. https://doi.org/10.1186/s12862-015-0338-9

    Article  PubMed  PubMed Central  Google Scholar 

  71. Castanet J, Francillon-Vieillot H, Meunier FJ, Ricqlès AD (1993) Bone and individual aging. In: Hall BK (ed) Bone growth – B. CRC Press, Boca Raton, pp 245–283

    Google Scholar 

  72. Aksu A (2015) Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). J Environ Health Sci Eng 13(1):79. https://doi.org/10.1186/s40201-015-0224-9

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nam DH, Lee DP (2006c) Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci Total Environ 357(1-3):288–295. https://doi.org/10.1016/j.scitotenv.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  74. Binkowski ŁJ, Przystupińska A, Wojtaś W (2016) Levels of total mercury in tissues of mallard drakes from industrialized wetlands area. Bull Environ Contam Toxicol 96(2):173–178. https://doi.org/10.1007/s00128-015-1657-7

    Article  CAS  PubMed  Google Scholar 

  75. Kalisinska E, Kosik-Bogacka DI, Lisowski P, Lanocha N, Jackowski A (2013) Mercury in the body of the most commonly occurring European game duck, the Mallard (Anas platyrhynchos L. 1758), from Northwestern Poland. Arch Environ Contam Toxicol 64(4):583–593. https://doi.org/10.1007/s00244-012-9860-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Solár.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Samples were collected in cooperation with the State nature protection of Slovak Republic, and Institute of High Mountain Biology is authorized by the Ministry of Environment (No. 3847/2014–2.3) to processing of animal samples (include the protection species).

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the manuscript and agree with its submission to Biological Trace Element Research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozák, G., Janiga, M. & Solár, J. Pollution of Feral Pigeon (Columba livia) Depends on Their Age and Their Health Status. Biol Trace Elem Res 200, 790–799 (2022). https://doi.org/10.1007/s12011-021-02689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02689-z

Keywords

Navigation