Skip to main content

Exercise Ameliorates Fluoride-induced Anxiety- and Depression-like Behavior in Mice: Role of GABA

Abstract

Fluoride exposure caused anxiety- and depression-like behavior in mice. Meanwhile, exercise contributes to relieve anxiety and depression. However, the effects of exercise on anxiety- and depression-like behavior in fluorosis mice remain unclear. In the current study, thirty-six Institute of Cancer Research (ICR) female mice were randomly assigned to four groups: control group (C, gavage with distilled water); exercise group (E, gavage with distilled water and treadmill exercise (speed, 10 m/min; time, 30 min/day)); fluoride group (F, gavage with 24 mg/kg sodium fluoride (NaF)); and exercise plus fluoride group (EF, gavage with 24 mg/kg NaF and treadmill exercise). All treatments lasted for 8 weeks. A number of entries into and time spent in the open zone in the elevated zero maze (EZM), resting time in the tail suspension test (TST) and levels of serotonin (5-HT) and gamma-aminobutyric acid (GABA), were significantly altered in F when compared to C. Meanwhile, the anxiety-like behavior in the EZM and the depression-like behavior in the TST were significantly improved in EF when compared to group F. Exercise significantly enhanced fluoride-induced low GABA level, with less effect on the concentration of 5-HT. Moreover, the mRNA and protein expressions of GABA synthesis and transport-related proteins of glutamic acid decarboxylase (GAD) 65 and GAD67 and vesicular GABA transporter (VGAT) were all strikingly decreased in F, while those in EF were increased. In conclusion, exercise ameliorates anxiety- and depression-like behavior in fluorosis mice through increasing the expressions of GABA synthesis and transport-related proteins, rather than 5-HT system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

All data generated or analyzed during this study are included in the published article and its supplementary information files. The raw data of the paper are available upon request from the corresponding author.

References

  1. Ten Cate JM, Buzalaf MAR (2019) Fluoride mode of action: once there was an observant dentist. J Dent Res 98:725–730

    Article  PubMed  CAS  Google Scholar 

  2. Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wasik A, Gutowska I (2017) The influence of fluorine on the disturbances of homeostasis in the central nervous system. Biol Trace Elem Res 177:224–234

    Article  CAS  PubMed  Google Scholar 

  3. Buzalaf MAR (2018) Review of fluoride intake and appropriateness of current guidelines. Adv Dent Res 29:157–166

    Article  CAS  PubMed  Google Scholar 

  4. Sun Z, Niu R, Wang B, Jiao Z, Wang J, Zhang J, Wang S, Wang J (2011) Fluoride-induced apoptosis and gene expression profiling in mice sperm in vivo. Arch Toxicol 85:1441–1452

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Wang HW, Lin L, Miao CY, Zhang Y, Zhou BH (2019) Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. Chemosphere 234:409–418

    Article  CAS  PubMed  Google Scholar 

  6. Ma Y, Niu R, Sun Z, Wang J, Luo G, Zhang J, Wang J (2012) Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol 86:849–856

    Article  CAS  PubMed  Google Scholar 

  7. Yan X, Dong N, Hao X, Xing Y, Tian X, Feng J, Xie J, Lv Y, Wei C, Gao Y, Qiu Y, Wang T (2019) Comparative transcriptomics reveals the role of the toll-like receptor signaling pathway in fluoride-induced cardiotoxicity. J Agric Food Chem 67:5033–5042

    Article  CAS  PubMed  Google Scholar 

  8. Niu R, Chen H, Manthari RK, Sun Z, Wang J, Zhang J, Wang J (2018) Effects of fluoride on synapse morphology and myelin damage in mouse hippocampus. Chemosphere 194:628–633

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Q, Niu Q, Chen JW, Xia T, Zhou GY, Li P, Dong LX, Xu CY, Tian ZY, Luo C et al (2019) Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children. Arch Toxicol 93:709–726

    Article  CAS  PubMed  Google Scholar 

  10. Yang L, Jin PY, Wang XY, Zhou Q, Lin XL, Xi SH (2018) Fluoride activates microglia, secretes inflammatory factors and influences synaptic neuron plasticity in the hippocampus of rats. Neurotoxicology 69:108–120

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Zhang J, Niu R, Manthari RK, Yang K, Wang J (2019) Effect of fluoride exposure on anxiety- and depression-like behavior in mouse. Chemosphere 215:454–460

    Article  CAS  PubMed  Google Scholar 

  12. Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50:28–46

    Article  CAS  PubMed  Google Scholar 

  13. Liu F, Ma J, Zhang H, Liu P, Liu YP, Xing B, Dang YH (2014) Fluoride exposure during development affects both cognition and emotion in mice. Physiol Behav 124:1–7

    Article  CAS  PubMed  Google Scholar 

  14. Zachariassen KE, Flaten TP (2009) Is fluoride-induced hyperthyroidism a cause of psychosis among East African immigrants to Scandinavia? Med. Hypotheses 72:501–503

    Article  CAS  Google Scholar 

  15. Ayuso-Mateos JL, Vazquez-Barquero JL, Dowrick C, Lehtinen V, Dalgard OS, Casey P, Wilkinson C, Lasa L, Page H, Dunn G et al (2001) Depressive disorders in Europe: prevalence figures from the ODIN study. Br J Psychiatry 179:308–316

    Article  CAS  PubMed  Google Scholar 

  16. Zhang M, Liu Y, Zhao M, Tang W, Wang X, Dong Z, Yu S (2017) Depression and anxiety behaviour in a rat model of chronic migraine. J Headache Pain 18:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chang C, Guo H, Tsai W, Yang K, Lin L, Cheng T, Chuu J (2015) Subchronic arsenic exposure induces anxiety-like behaviors in normal mice and enhances depression-like behaviors in the chemically induced mouse model of depression. Biomed Res Int 2015:159015

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    Article  CAS  PubMed  Google Scholar 

  19. Richards EM, Mathews DC, Luckenbaugh DA, Ionescu DF, Machado-Vieira R, Niciu MJ, Duncan WC, Nolan NM, Franco-Chaves JA, Hudzik T, Maciag C, Li S, Cross A, Smith MA, Zarate CA Jr (2016) A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology 233:1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    Article  CAS  PubMed  Google Scholar 

  22. Luscher B, Fuchs T (2015) GABAergic control of depression-related brain states. Adv Pharmacol 73:97–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy YP, Tiwari S, Tomar LK, Desai N, Sharma VK (2020) Fluoride-induced expression of neuroinflammatory markers and neurophysiological regulation in the brain of wistar rat model. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02362-x

  24. Kaur T, Bijarnia RK, Nehru B (2009) Effect of concurrent chronic exposure of fluoride and aluminum on rat brain. Drug Chem Toxicol 32:215–221

    Article  CAS  PubMed  Google Scholar 

  25. Pal S, Sarkar C (2014) Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain. Environ Toxicol Pharmacol 38:684–699

    Article  CAS  PubMed  Google Scholar 

  26. Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, Eisenbrand G, Engel KH, Epe B, Grune T, Heinz V, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lampen A, Mally A, Marchan R, Marko D, Mühle E, Nitsche MA, Röhrdanz E, Stadler R, van Thriel C, Vieths S, Vogel RF, Wascher E, Watzl C, Nöthlings U, Hengstler JG (2020) Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol 94:1375–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lapmanee S, Charoenphandhu J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2017) Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats. PLoS One 12:e0187671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Morgan JA, Singhal G, Corrigan F, Jaehne EJ, Jawahar MC, Baune BT (2018) The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice. Behav Brain Res 337:193–203

    Article  PubMed  Google Scholar 

  29. Cassilhas RC, Tufik S, de Mello MT (2016) Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 73:975–983

    Article  CAS  PubMed  Google Scholar 

  30. Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8:263–271

    Article  PubMed  Google Scholar 

  31. D'Ascola A, Bruschetta G, Zanghì G, Campo S, Medica P, Campana S, Ferlazzo G, Gibbs BF, Ferlazzo AM (2018) Changes in plasma 5-HT levels and equine leukocyte SERT expression in response to treadmill exercise. Res Vet Sci 118:184–190

    Article  CAS  PubMed  Google Scholar 

  32. Yuan TF, Paes F, Arias-Carrión O, Ferreira Rocha NB, de Sá Filho AS, Machado S (2015) Neural mechanisms of exercise: anti-depression, neurogenesis, and serotonin signaling. CNS Neurol Disord Drug Targets 14:1307–1311

    Article  CAS  PubMed  Google Scholar 

  33. Maddock RJ, Casazza GA, Fernandez DH, Maddock MI (2016) Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci 36:2449–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated "zero-maze" as an animal model of anxiety. Psychopharmacology 116:56–64

    Article  CAS  PubMed  Google Scholar 

  35. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  36. Murrough JW, Yaqubi S, Sayed S, Charney DS (2015) Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs 20:393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baruch N, Burgess J, Pillai M, Allan CL (2019) Treatment for depression comorbid with dementia. Evid Based Ment Health 22:167–171

    Article  PubMed  Google Scholar 

  38. Otto MW, Tuby KS, Gould RA, McLean RY, Pollack MH (2001) An effect-size analysis of the relative efficacy and tolerability of serotonin selective reuptake inhibitors for panic disorder. Am J Psychiatry 158:1989–1992

    Article  CAS  PubMed  Google Scholar 

  39. Peng GJ, Tian JS, Gao XX, Zhou YZ, Qin XM (2015) Research on the pathological mechanism and drug treatment mechanism of depression. Curr Neuropharmacol 13:514–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (2013) Exercise for depression. Cochrane Database Syst Rev (9):CD004366

  41. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson's disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  42. Gu Z, Chu L, Han Y (2019) Therapeutic effect of resveratrol on mice with depression. Exp Ther Med 17:3061–3064

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Borroto-Escuela DO, Narváez M, Ambrogini P, Ferraro L, Brito I, Romero-Fernandez W, Andrade-Talavera Y, Flores-Burgess A, Millon C, Gago B et al (2018) Receptor-receptor interactions in multiple 5-HT1A heteroreceptor complexes in raphe-hippocampal 5-HT transmission and their relevance for depression and its treatment. Molecules 23:1341

    Article  PubMed Central  CAS  Google Scholar 

  44. Li X, Fan Y, Xiao S, Peng S, Dong X, Zheng X, Liu CC, Li H, Xiao Z (2015) Decreased platelet 5-hydroxytryptamin (5-HT) levels: a response to antidepressants. J Affect Disord 187:84–90

    Article  CAS  PubMed  Google Scholar 

  45. Gabbay V, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM, Alonso CM, Shungu DC (2012) Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch Gen Psychiatry 69:139–149

    Article  CAS  PubMed  Google Scholar 

  46. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    Article  CAS  PubMed  Google Scholar 

  47. Davis JM, Bailey SP (1997) Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 29:45–57

    Article  CAS  PubMed  Google Scholar 

  48. Chaouloff F, Laude D, Elghozi JL (1989) Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. J Neural Transm 78:121–130

    Article  CAS  PubMed  Google Scholar 

  49. Songtachalert T, Roomruangwong C, Carvalho AF, Bourin M, Maes M (2018) Anxiety disorders: sex differences in serotonin and tryptophan metabolism. Curr Top Med Chem 18:1704–1715

    Article  CAS  PubMed  Google Scholar 

  50. MacKenzie G, Maguire J (2014) The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology 231:3333–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gressier F, Calati R, Serretti A (2016) 5-HTTLPR and gender differences in affective disorders: a systematic review. J Affect Disord 190:193–207

    Article  CAS  PubMed  Google Scholar 

  52. Lee SE, Lee Y, Lee GH (2019) The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 42:1031–1039

    Article  CAS  PubMed  Google Scholar 

  53. Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, Moriya T, Shibata S, Obata K (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58

    Article  CAS  PubMed  Google Scholar 

  54. Lazarus MS, Krishnan K, Huang ZJ (2015) GAD67 deficiency in parvalbumin interneurons produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal cortex. Cereb Cortex 25:1290–1296

    Article  PubMed  Google Scholar 

  55. Lau CG, Murthy VN (2012) Activity-dependent regulation of inhibition via GAD67. J Neurosci 32:8521–8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi J, Kim M, Sanchez R, Ziaee SM, Kohtz JD, Koh S (2018) Enhanced susceptibility to stress and seizures in GAD65 deficient mice. PLoS One 13:e0191794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mitchell AC, Jiang Y, Peter C, Akbarian S (2015) Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 167:28–34

    Article  PubMed  Google Scholar 

  58. Fogaca MV, Duman RS (2019) Cortical GABAergic dysfunction in stress and depression: New insights for therapeutic interventions. Front Cell Neurosci 13:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Müller I, Obata K, Richter-Levin G, Stork O (2014) GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology. Front Behav Neurosci 8:265

    PubMed  PubMed Central  Google Scholar 

  60. Schoenfeld TJ, Rada P, Pieruzzini PR, Hsueh B, Gould E (2013) Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 33:7770–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lim BV, Shin MS, Lee JM, Seo JH (2015) Treadmill exercise prevents GABAergic neuronal loss with suppression of neuronal activation in the pilocarpine-induced epileptic rats. J Exerc Rehabil 11:80–86

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferreira-Junior NC, Ruggeri A, Silva SD Jr, Zampieri TT, Ceroni A, Michelini LC (2019) Exercise training increases GAD65 expression, restores the depressed GABAA receptor function within the PVN and reduces sympathetic modulation in hypertension. Physiol Rep 7:e14107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by Shanxi Province Innovation Project for Graduates Students (Grant 2020SY201), Shanxi Scholarship Council of China (HGKY2019042), and the Program for the Top Young Innovative Talents of Shanxi Agricultural University (TYIT201408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2543 kb).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Wang, J., Hao, Y. et al. Exercise Ameliorates Fluoride-induced Anxiety- and Depression-like Behavior in Mice: Role of GABA. Biol Trace Elem Res 200, 678–688 (2022). https://doi.org/10.1007/s12011-021-02678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02678-2

Keywords