Skip to main content
Log in

Selenium-Based Novel Epigenetic Regulators Offer Effective Chemotherapeutic Alternative with Wider Safety Margins in Experimental Colorectal Cancer

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide. Despite the critical involvement of epigenetic modifications in CRC, the studies on the chemotherapeutic efficacy of various epigenetic regulators remain limited. Considering the key roles of histone deacetylases (HDACs) in the regulation of diverse cellular processes, several HDAC inhibitors are implied as effective therapeutic strategies. In this context, suberoylanilide hydroxamic acid (SAHA), a 2nd-generation HDAC inhibitor, showed limited efficacy in solid tumors. Also, side effects associated with SAHA limit its clinical application. Based on the redox-modulatory and HDAC inhbitiory activities of essential trace element selenium (Se), the anti-carcinogenic potential of Se substituted SAHA, namely, SelSA-1 (25 mg kg−1), was screened for it enhanced anti-tumorigenic role and wider safety profiles in DMH-induced CRC in Balb/c mice. A multipronged approach such as in silico, biochemical, and pharmacokinetics (PK) has been used to screen, characterize, and evaluate these novel compounds in comparison to existing HDAC inhibitor SAHA. This is the first in vivo study indicating the chemotherapeutic potential of Se-based novel epigenetic regulators such as SelSA-1 in any in vivo experimental model of carcinogenesis. Pharmcological and toxicity data indicated better safety margins, bioavailability, tolerance, and elimination rate of SelSA-1 compared to classical HDAC inhibitor SAHA. Further, histological and morphological evidence demonstrated enhanced chemotherapeutic potential of SelSA-1 even at lower pharmacological doses than SAHA. This is the first in vivo study suggesting Se-based novel epigenetic regulators as potential chemotherapeutic alternatives with wider safety margins and enhanced anticancer activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Narod SA, Huzarski T, Jakubowska A, Gronal J, Cybulski C et al (2019) Serum selenium level and cancer risk: a nested case-control study. Hered Cancer Clin Pract 17:1–7

    Article  Google Scholar 

  3. Lener MR, Gupta S, Scott RJ, Tootsi M, Kulp M et al (2013) Can selenium levels act as a marker of colorectal cancer risk? BMC Cancer 13:214. https://doi.org/10.1186/1471-2407-13-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saxena A, Fayad R, Kaur K, Truman S, Greer J et al (2017) Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer. Cancer Biol Ther 18:257–267. https://doi.org/10.1080/15384047.2016.1276130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Speckmann B, Grune T (2015) Epigenetics effects of selenium and their implications for health. Epigeetics 10:179–190. https://doi.org/10.1080/15592294.2015.1013792

    Article  Google Scholar 

  6. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitor as anticancer drugs. Int J Mol Sci 18:1414. https://doi.org/10.3390/ijms18071414

    Article  CAS  PubMed Central  Google Scholar 

  7. Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052. https://doi.org/10.1111/j.0022-202X.2005.23925.x

    Article  CAS  PubMed  Google Scholar 

  8. You BR, Han BR, Park WH (2017) Suberoylanilidehydroxamic acid increases anticancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells. Oncotarget 8:17726–17737. https://doi.org/10.18632/oncotarget.14628

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gluud M, Fredholm S, Blumel E, Willerslev-Olsen (2020) MicroRNA-93 targets p21 and promotes proliferation in mycosis fungoides T cells. Dermatol. https://doi.org/10.1159/000505743

  10. Goey AK, Sissung TM, Peer CJ, Figg WD (2016) Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics 17:1807–1815. https://doi.org/10.2217/pgs-2016-0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bubna AK (2015) Vorinostat—an overview. Indian J Dermatol 60:419. https://doi.org/10.4103/0019-5154.160511

    Article  PubMed  PubMed Central  Google Scholar 

  12. Narayan V, Ravindra KC, Liao C, Kaushal N, Carlson BA et al (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26:138–145. https://doi.org/10.1016/j.jnutbio.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  13. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39. https://doi.org/10.1182/blood-2006-06-025999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Desai D, Salli U, Vrana KE, Amin S (2010) SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg Med Chem Lett 20:2044–2047. https://doi.org/10.1016/j.bmcl.2009.07.068

    Article  CAS  PubMed  Google Scholar 

  15. Tang C, Du Y, Liang Q, Cheng Z, Tian J et al (2018) Development of a novel ferrocenyl histone deacetylase inhibitor for triple-negative breast cancer therapy. Organometallics 37:2368–7235. https://doi.org/10.1021/acs.organomet.8b00354

    Article  CAS  Google Scholar 

  16. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671. https://doi.org/10.1016/j.bcp.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Wang H, Shi Q, Katkuri S, Walhi V et al (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6:285–295. https://doi.org/10.1016/j.ccr.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  18. Butler LM, Aqus DB, Scher HI, Higgins B, Rose A et al (2000) Suberoylanilidehydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170

    CAS  PubMed  Google Scholar 

  19. Cai YY, Yap CW, Wang Z, Ho PC, Chan SY et al (2010) Solubilization of vorinostat by cyclodextrins. J Clin Pharm Ther 35:521–526. https://doi.org/10.1111/j.1365-2710.2009.01095.x

    Article  CAS  PubMed  Google Scholar 

  20. Balasubramaniam P, Malathi A (1992) Comparative study of hemoglobin estimated by Drabkin’s and Sahli;s methods. J Postgrad Med 38:8–9

    CAS  PubMed  Google Scholar 

  21. Karmen A, Wroblewski F, Ladue JS (1955) Transaminase activity in human blood. J Clin Invest 34:126–131

    Article  CAS  Google Scholar 

  22. Wroblewski F, Ladue JS (1956) Serum glutamic pyruvic transaminase (SGP-T) in hepatic disease: a preliminary report. Ann Intern Med 45:801–811

    Article  CAS  Google Scholar 

  23. Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ et al (1983) A refererence method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761

    Article  CAS  Google Scholar 

  24. Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132

    Article  CAS  Google Scholar 

  25. Jaffe M (1886) Ueber den N iederschlag welchen pikrinsaure in normalen harn erzeugt und eine neue reaction des kreatinins. Z Physiol Chem 10:391–400

    Google Scholar 

  26. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Somoza JR, Skene RJ, Katz BA, Mol C, Dho J et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 2:1325–1334. https://doi.org/10.1016/j.str.2004.04.012

    Article  CAS  Google Scholar 

  28. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaur J, Sanyal SN (2011) Diclofenac, aselective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol Carcinog 50:707–718. https://doi.org/10.1002/mc.20736

    Article  CAS  PubMed  Google Scholar 

  30. Hajhashemi V, Sadeghi H, Minaiyan M, Movahedian A, Talebi A et al (2011) Effect of fluvoxamine on carrageenan-induced paw edema in rats evaluation of the action sites. Iran J Pharm Res 10:611–618

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bradley PP, Prebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209. https://doi.org/10.1111/1523-1747.ep12506462

    Article  CAS  PubMed  Google Scholar 

  32. Ghanghas P, Jain S, Rana C, Sanyal SN (2016) Chemoprevention of colon cancer through inhibition of angiogenesis and induction of apoptosis by nonsteroidal anti-inflammatory drugs. J Environ Pathol Toxicol Oncol. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016015704

  33. Humanson GL (1961) In:Basic procedures-animal tissue technique. Johns Hopkins University Press (Part-1):130-132.

  34. Ghanghas P, Jain S, Rana C, Sanyal SN (2016) Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed Pharmacother 78:239–247. https://doi.org/10.1016/j.biopha.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  35. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–168

    CAS  PubMed  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  37. Ishihama K, Yamakawa M, Semba S, Takeda H, Kawata S (2007) Expression of HDAC1 and CBP/p7300 in human colorectal carcinomas. J Clin Pathol 60:1205–1210. https://doi.org/10.1136/jcp.2005.029165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang L (2006) Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 209:611–616. https://doi.org/10.1002/jcp.20781

    Article  CAS  PubMed  Google Scholar 

  39. Moradei O, Maroun CR, Paquin I, Vaisburg A (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr Med Chem Anticancer Agents 5:529–560. https://doi.org/10.2174/1568011054866946

    Article  CAS  PubMed  Google Scholar 

  40. Anantharaju PG, Reddy DB, Padukudru MA, Chitturi CMK, Vimalambike MG (2017) Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of histone deacetylase (HDAC). PLOS One 12:e0186208. https://doi.org/10.1371/journal.pone.0186208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhandari R, Kaur IP (2013) Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 441(1-2):202–212. https://doi.org/10.1016/j.ijpharm.2012.11.042

    Article  CAS  PubMed  Google Scholar 

  42. Kumar P, Sharma G, Gupta V, Kaur R, Thakur K et al (2019) Oral delivery of methylthioadenosine to the brain employing solid lipid nanoparticles: pharmacokinetic, behavioral, and histopathological evidences. AAPS Pharm Sci Tech 20:74. https://doi.org/10.1208/s12249-019-1296-0

    Article  CAS  Google Scholar 

  43. Palmieri D, Lockman PR, Thomas FC, Hua E, Herring J et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:148–157. https://doi.org/10.1158/1078-0432.CCR-09-1039

    Article  CAS  Google Scholar 

  44. Saelen MG, Ree AH, Kristian A, Fleten KG, Furre T et al (2012) Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiat Oncol 7:165. https://doi.org/10.1186/1748-717X-7-165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carew JS, Median EC, Esquvel JA, Mahalingam D, Swords R et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459. https://doi.org/10.1111/j.1582-4934.2009.00832.x

    Article  CAS  PubMed  Google Scholar 

  46. Claerhout S, Lim JY, Choi W, Park YY, Park YY, Kim K et al (2011) Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS ONE 6:e24662. https://doi.org/10.1371/journal.pone.0024662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Richon VM (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer 95:S2–S6. https://doi.org/10.1038/sj.bjc.6603463

    Article  CAS  PubMed Central  Google Scholar 

  48. Calder EDD, Skwarska A, Sneddon D, Folkes LK, Mistry IN, Conway SJ, Hammond EM (2020) Hypoxia -activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron 76. https://doi.org/10.1016/j.tet.2020.131170

  49. Andersen CL, McMullin MF, Ejerblad E, Zweegman S, Harriso C et al (2013) A phase II study of vorinostat (MK-0683) in patients with polycythaemiavera and essential thrombocythaemia. Br J Haematol 162:498–508. https://doi.org/10.1111/bjh.12416

    Article  CAS  PubMed  Google Scholar 

  50. Kaur R, Thakur S, Rastogi P, Kaushal N (2018) Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis. PLoS One 13:e0201356. https://doi.org/10.1371/journal.pone.0201356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gandhi UH, Kaushal N, Kodihalli CR, Hegde S, Nelson SM et al (2011) Selenoprotein-dependent upregulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR)-γ. J Biol Chem 286:27471–27482. https://doi.org/10.1074/jbc.M111.260547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang CL, Zhang X, Duvic M (2012) Class I HDAC inhibitor entinstat alone and in combination with bexarotene induce apoptosis in cutaneous T-cell lymphoma cells: potential role for NF-kB signalling: CS11-4. J Dermatol 39:1007–1017. https://doi.org/10.1111/j.1346-8138.2012.01623.x

    Article  Google Scholar 

  53. Chong W, Li Y, Liu B, Liu Z, Zhao T et al (2012) Anti-inflammatory properties of histone deacetylase inhibitor: a mechanistic study. J Trauma Acute Care Surg 72:347–353. https://doi.org/10.1097/TA.0b013e318243d8b2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fang S, Menq X, Zhang Z, Wang Y, Liu Y et al (2016) Vorinostat modulates the imbalance of T cell subsets, suppresses macrophages activity, and ameliorates experimental autoimmune uveoretinitis. NeuroMolecular Med 18:134–145. https://doi.org/10.1007/s12017-016-8383-0

    Article  CAS  PubMed  Google Scholar 

  55. Lohman RJ, Lyer A, Fairlie TJ, Cotterell A, Gupta P et al (2016) Differential anti-inflammatory activity of HDAC inhibitors in human macrophages and rat arthritis. J Pharmacol Exp Ther 356:387–396. https://doi.org/10.1124/jpet.115.229328

    Article  CAS  PubMed  Google Scholar 

  56. Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S et al (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS One 6:20987. https://doi.org/10.1371/journal.pone.0020987

    Article  CAS  Google Scholar 

  57. Masadeh MM, Alzoubi KH, Al-Azzam SI, Al-Buhairan AM (2017) Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin. Clin Pharmacol 9:119–124. https://doi.org/10.2147/CPAA.S148448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Unqerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M et al (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(3):673–678

    Article  Google Scholar 

  59. Kv A, Madhana RM, Js IC, Lahkar M, Sinha S et al (2018) Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res 344:73–84. https://doi.org/10.1016/j.bbr.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  60. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660. https://doi.org/10.1016/j.bbagen.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  61. Warrington JM, Kim JJ, Stahel P, Cieslar SR, Moorehead RA et al (2013) Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors. BMC Cancer 13:492. https://doi.org/10.1186/1471-2407-13-492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo CH, Hsia S, Hsiung DY, Chen PC (2015) Supplementation with selenium yeast on the prooxidant–antioxidant activities and antitumor effects in breast tumor xenograft-bearing mice. J Nutr Biochem 26:1568–1579. https://doi.org/10.1016/j.jnutbio.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  63. Yuan C, Wang C, Wang J, Kumar V, Anwar F et al (2016) Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana. Nutr Res 36:1243–1254. https://doi.org/10.1016/j.nutres.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  64. Bourens M, Fontanesi F, Soto I, Liu J (2013) Redox and reactive oxygen species regulation of mitochondrial cytochrome c oxidase biogenesis. Antioxid Redox Signal 19:1940–1952. https://doi.org/10.1089/ars.2012.4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dai L, He G, Zhang K, Guan X, Wang Y et al (2019) Trichostatin A induces p53-dependent endoplasmic reticulum stress in human colon cancer cells. Oncol Lett 17:660–667. https://doi.org/10.3892/ol.2018.9641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Pulkit Rastogi (Assistant professor, Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), for histopathological analysis of the colon sections.

Data Availability Statement

The authors declare that all the data supporting the findings of this study are available within the article.

Funding

The work was supported by Senior Research Fellowship (SRF) Sanctioned to Ms. Preety by the Indian Council of Medical Research (ICMR) (45/21/2019-BIO/BMS). The work has been partially supported by DST-PURSE (58-60/RPC) and DST-FIST (SR/FST/LSI-425/2009) grants sanctioned to the Panjab University (PU) and Department of Biophysics, PU, Chandigarh (India).

Author information

Authors and Affiliations

Authors

Contributions

Preety Ghanghas: methodology, software, validation, data curation, writing ± original draft, writing ± review and editing, and project administration. Dr Monika Sharma: validation, formal analysis, and investigation. Dr Dhimant Desai: formal analysis and investigation. Dr Kaisar Raza: validation and formal analysis. Dr Aman Bhalla: formal analysis. Dr Pramod Kumar: investigation. Dr Dipika Narula: investigation. Dr. Shantu Amin: investigation. Dr Sankar Nath Sanyal: formal analysis, visualization, and supervision. Dr. Naveen Kaushal: conceptualization, formal analysis, investigation, resources, writing ± original draft, writing ± review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Naveen Kaushal.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanghas, P., Sharma, M., Desai, D. et al. Selenium-Based Novel Epigenetic Regulators Offer Effective Chemotherapeutic Alternative with Wider Safety Margins in Experimental Colorectal Cancer. Biol Trace Elem Res 200, 635–646 (2022). https://doi.org/10.1007/s12011-021-02659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02659-5

Keywords

Navigation