The Effects of Zinc Sulfate Supplementation on Serum Copeptin, C-Reactive Protein and Metabolic Markers in Zinc-Deficient Diabetic Patients on Hemodialysis: A Randomized, Double-Blind, Placebo-Controlled Trial

Abstract

We aimed to investigate the association between zinc (Zn) supplementation and serum levels of copeptin, high-sensitive C-reactive protein (hs-CRP), glycemic control, anthropometric parameters and renal function in Zn -deficient diabetic hemodialysis patients (DHPs). This randomized, double-blind, placebo-controlled trial (RCT) was conducted on 46 DHPs with Zn-deficiency. The Zn supplement group (n = 21) received a 220-mg/day Zn sulfate capsule (containing 50 mg Zn), and the control group (n = 25) received a placebo capsule (220 mg corn starch), for 8 weeks. Fasting, predialysis blood samples were taken at baseline and after 8 weeks to assess fasting blood glucose (FBG), serum insulin, copeptin, high-sensitive C-reactive protein (hs-CRP), blood urea nitrogen (BUN), creatinine (Cr) concentrations, and homoeostatic model assessment (HOMA-IR) and quantitative insulin-sensitivity check index (QUICKI). Compared to controls, serum copeptin (P < 0.001), hs-CRP (P < 0.001), BUN (P < 0.001), Cr (P < 0.001), Zn (P < 0.001), FBG (P < 0.001) levels, BMI (P < 0.001), and body weight (P < 0.001) were significantly affected following ZnSO4 supplementation for 8 weeks. In contrast, QUICKI (P = 0.57), HOMA-IR (P = 0.60), and serum insulin (P = 0.55) were not affected following Zn supplementation in comparison with patients receiving placebo. Zn sulfate supplementation appears to have favorable effects on serum copeptin and hs-CRP, FBG, and renal function in Zn-deficient DHPs. Iranian Registry of Clinical Trials Identifier: IRCT20190806044461N1

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71(6):884–895

    PubMed  Article  Google Scholar 

  2. 2.

    Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T (2016) Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol 5(1):49–56

    PubMed  Google Scholar 

  3. 3.

    Fatonah S, Sulchan M, Sofro MAU (2019) Macronutrients, micronutrients intake and inflammation in hemodialysis patients. Potravinarstvo Slovak J Food Sci 13(1):891–897

    Article  Google Scholar 

  4. 4.

    Rysz J, Banach M, Cialkowska-Rysz A, Stolarek R, Barylski M, Drozdz J, Okonski P (2006) Blood serum levels of IL-2, IL-6, IL-8, TNF-alpha and IL-1beta in patients on maintenance hemodialysis. Cell Mol Immunol 3(2):151–154

    CAS  PubMed  Google Scholar 

  5. 5.

    Prasad AS, Miale A Jr, Farid Z, Sandstead H, Schulert A (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med 61(4):537–549

    CAS  PubMed  Google Scholar 

  6. 6.

    Olechnowicz J, Tinkov A, Skalny A, Suliburska J (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68(1):19–31

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Hosseini R, Ferns GA, Sahebkar A, Mirshekar MA, Jalali M (2021) Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Cytokine 138:155396

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bao S, Liu M-J, Lee B, Besecker B, Lai J-P, Guttridge DC et al (2010) Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-κB. Am J Phys Lung Cell Mol Phys 298(6):L744–LL54

    CAS  Google Scholar 

  9. 9.

    Prasad AS (2014) Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr 1:14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Dvornik Š, Ćuk M, Rački S, Zaputović L (2006) Serum zinc concentrations in the maintenance hemodialysis patients. Coll Antropol 30(1):125–129

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Holwerda DA (1972) A glycopeptide from the posterior lobe of pig pituitaries: 1. isolation and characterization. Eur J Biochem 28(3):334–339

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Afsar B (2017) Pathophysiology of copeptin in kidney disease and hypertension. Clin Hypertens 23(1):13

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Artunc F, Nowak A, Mueller C, Breidthardt T, Twerenbold R, Wagner R, Peter A, Haering HU, Ebmeyer S, Friedrich B (2014) Plasma concentrations of the vasoactive peptide fragments mid-regional pro-adrenomedullin, C-terminal pro-endothelin 1 and copeptin in hemodialysis patients: associated factors and prediction of mortality. PLoS One 9(1):e86148

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Ettema EM, Kuipers J, Assa S, Bakker SJ, Groen H, Westerhuis R et al (2015) Changes in plasma copeptin levels during hemodialysis: are the physiological stimuli active in hemodialysis patients? PLoS One 10(5):e0127116

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Christ-Crain M, Fenske W (2016) Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Rev Endocrinol 12(3):168–176

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kobayashi H, Abe M, Okada K, Tei R, Maruyama N, Kikuchi F, Higuchi T, Soma M (2015) Oral zinc supplementation reduces the erythropoietin responsiveness index in patients on hemodialysis. Nutrients. 7(5):3783–3795

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Rashidi AA, Salehi M, Piroozmand A, Sagheb MM (2009) Effects of zinc supplementation on serum zinc and C-reactive protein concentrations in hemodialysis patients. J Ren Nutr 19(6):475–478

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Halim MM, Ghavamzadeh S, Makhdoomi K Effect of zinc supplementation on insulin resistance, lipid profile, and body composition in non-diabetic hemodialysis patients. Cardiovasc Dis 15:16

  19. 19.

    Roozbeh J, Hedayati P, Sagheb MM, Sharifian M, Jahromi AH, Shaabani S et al (2009) Effect of zinc supplementation on triglyceride, cholesterol, LDL, and HDL levels in zinc-deficient hemodialysis patients. Ren Fail 31(9):798–801

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Amerian M, Rouhi A, Zolfaghari P, Doroudgar M, Rezaei MA, Sohrabi MB (2020) The effect of zinc sulfate on malnutrition in hemodialysis patients. Int J Health Stud 6(3):13

    Google Scholar 

  21. 21.

    Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A (2015) Assessment of insulin sensitivity/resistance. Ind J Endocrinol Metab 19(1):160–164

    CAS  Article  Google Scholar 

  22. 22.

    Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL (2009) Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci 116(3):257–263

    CAS  Article  Google Scholar 

  23. 23.

    Morgenthaler NG (2010) Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail 16:S37–S44

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Shimizu S, Tei R, Okamura M, Takao N, Nakamura Y, Oguma H, Maruyama T, Takashima H, Abe M (2020) Prevalence of zinc deficiency in Japanese patients on peritoneal dialysis: comparative study in patients on hemodialysis. Nutrients. 12(3):764

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  25. 25.

    Koch A, Yagmur E, Hoss A, Buendgens L, Herbers U, Weiskirchen R, Koek GH, Trautwein C, Tacke F (2018) Clinical relevance of copeptin plasma levels as a biomarker of disease severity and mortality in critically ill patients. J Clin Lab Anal 32(9):e22614

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Engelbertz C, Brand E, Fobker M, Fischer D, Pavenstädt H, Reinecke H (2016) Elevated copeptin is a prognostic factor for mortality even in patients with renal dysfunction. Int J Cardiol 221:327–332

    PubMed  Article  Google Scholar 

  27. 27.

    Meijer E, Bakker SJ, Halbesma N, De Jong PE, Struck J, Gansevoort RT (2010) Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney Int 77(1):29–36

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Golembiewska E, Qureshi AR, Dai L, Lindholm B, Heimbürger O, Söderberg M et al (2020) Copeptin is independently associated with vascular calcification in chronic kidney disease stage 5. BMC nephrology 21(1):43

  29. 29.

    Okamoto T, Hatakeyama S, Togashi K, Hamaya T, Tanaka Y, Imanishi K et al (2020) Pre-dialysis serum creatinine as an independent predictor of responsiveness to zinc supplementation among patients on hemodialysis. Clin Exp Nephrol:1–8

  30. 30.

    Scheurig A, Thorand B, Fischer B, Heier M, Koenig W (2008) Association between the intake of vitamins and trace elements from supplements and C-reactive protein: results of the MONICA/KORA Augsburg study. Eur J Clin Nutr 62(1):127–137

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Peretz A, Neve J, Jeghers O, Pelen F (1993) Zinc distribution in blood components, inflammatory status, and clinical indexes of disease activity during zinc supplementation in inflammatory rheumatic diseases. Am J Clin Nutr 57(5):690–694

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Craig G, Evans S, Brayshaw B (1990) An inverse relationship between serum zinc and C-reactive protein levels in acutely ill elderly hospital patients. Postgrad Med J 66(782):1025–1028

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH, Sattar N (2015) Copeptin, insulin resistance, and risk of incident diabetes in older men. J Clin Endocrinol Metab 100(9):3332–3339

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Gupta R, Garg V, Mathur D, Goyal R (1998) Oral zinc therapy in diabetic neuropathy. The Journal of the Association of Physicians of India 46(11):939–42

  36. 36.

    Foster M, Samman S (2010) Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13(10):1549–1573

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Jansen J, Karges W, Rink L (2009) Zinc and diabetes—clinical links and molecular mechanisms. J Nutr Biochem 20(6):399–417

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Taylor CG (2005) Zinc, the pancreas, and diabetes: insights from rodent studies and future directions. Biometals. 18(4):305–312

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Jenner A, Ren M, Rajendran R, Ning P, Huat BTK, Watt F et al (2007) Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic Biol Med 42(4):559–566

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27(2):137–142

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Asghari S, Hosseinzadeh-Attar MJ, Alipoor E, Sehat M, Mohajeri-Tehrani MR (2019) Effects of zinc supplementation on serum adiponectin concentration and glycemic control in patients with type 2 diabetes. J Trace Elem Med Biol 55:20–25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Gomez-Garcia A, Hernández-Salazar E, Gonzalez-Ortiz M, Martínez-Abundis E (2006) Effect of oral zinc administration on insulin sensitivity, leptin and androgens in obese males. Rev Med Chil 134(3):279–284

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Kim J, Lee S (2012) Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nutr Res Pract 6(3):221–225

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Payahoo L, Ostadrahimi A, Mobasseri M, Bishak YK, Farrin N, Jafarabadi MA et al (2013) Effects of zinc supplementation on the anthropometric measurements, lipid profiles and fasting blood glucose in the healthy obese adults. Adv Pharm Bullet 3(1):161–165

    Google Scholar 

  45. 45.

    Wegmüller R, Tay F, Zeder C, Brnić M, Hurrell RF (2014) Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr 144(2):132–136

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Rambod M, Pasyar N, Ramzi M (2018) The effect of zinc sulfate on prevention, incidence, and severity of mucositis in leukemia patients undergoing chemotherapy. Eur J Oncol Nurs 33:14–21

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This article is extracted from a master’s degree thesis in nutrition. The authors are grateful to Research Vice Chancellor of Zahedan University of Medical Sciences for financial support and to all patients for their sincere cooperation in this study.

Funding

The study was supported by a grant from Zahedan University of Medical Sciences (Grant No.: 9510).

Author information

Affiliations

Authors

Contributions

RH and FM contributed to the study design and concept. ESH and RH contributed to data collection. AMM and ARD contributed to data analyses. FM and MK contributed to the interpretation of data for the work. RH, FM, GAF, and MJ contributed to drafting and reviewing the final manuscript. All read and approved the final manuscript for publication.

Corresponding author

Correspondence to Farzaneh Montazerifar.

Ethics declarations

Ethics Approval

The protocol of the study was approved by the Ethics Committee of the Zahedan University of Medical Sciences (approval date: July 2019; number: 9510).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, R., Montazerifar, F., Shahraki, E. et al. The Effects of Zinc Sulfate Supplementation on Serum Copeptin, C-Reactive Protein and Metabolic Markers in Zinc-Deficient Diabetic Patients on Hemodialysis: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res (2021). https://doi.org/10.1007/s12011-021-02649-7

Download citation

Keywords

  • Zinc
  • Copeptin
  • Diabetic nephropathy
  • Glycemic indices
  • Inflammation