Skip to main content
Log in

Nickel Sulfate Induces Autophagy in Human Thyroid Follicular Epithelial Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nickel is an industrial and environmental toxic metal, which is toxic to humans in certain forms at high doses. Here, we investigated the cytotoxic effects of nickel sulfate (NiSO4) exposure on the human thyroid follicular epithelial cells (Nthy-ori 3-1) and its underlying toxicological mechanisms. The results showed that NiSO4 reduced the cell viability of Nthy-ori 3-1 cells in a dose- and time-dependent manner, inducing S and G2/M phases cell-cycle arrest and apoptosis. Electron microscopy demonstrated that abundant autophagic vacuoles were found in Nthy-ori 3-1 cells after NiSO4 treatment. Accordingly, exposure of Nthy-ori 3-1 cells to NiSO4 resulted in a dose-dependent increase of LC3II/I ratio, an induction of Beclin-1 expression, and a decrease in p62 levels. Blockade of autophagy with 3-methyladenine (3-MA) potentiated the NiSO4-induced apoptotic cell death, while induction of autophagy significantly alleviated toxicity of NiSO4. From a molecular standpoint, NiSO4 markedly promoted the activation of p38 and IKKβ by increasing their phosphorylation. In conclusion, we showed that autophagy was induced to protect thyroid cells from Ni2+ mediated apoptosis, thus providing rational strategy to prevent against nickel toxicity in the thyroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3). https://doi.org/10.3390/ijerph17030679

  2. Vasiluk L, Sowa J, Sanborn P, Ford F, Dutton MD et al (2019) Bioaccessibility estimates by gastric SBRC method to determine relationships to bioavailability of nickel in ultramafic soils. Sci Total Environ 673:685–693. https://doi.org/10.1016/j.scitotenv.2019.04.059

    Article  CAS  PubMed  Google Scholar 

  3. Pappas RS, Fresquez MR, Martone N, Watson CH (2014) Toxic metal concentrations in mainstream smoke from cigarettes available in the USA. J Anal Toxicol 38(4):204–211. https://doi.org/10.1093/jat/bku013

    Article  CAS  PubMed  Google Scholar 

  4. Son YO (2019) Molecular mechanisms of nickel-induced carcinogenesis. Endocr Metab Immune Disord Drug Targets. https://doi.org/10.2174/1871530319666191125112728

  5. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A et al (2015) Executive summary to EDC-2: the Endocrine Society's Second Scientific Statement on endocrine-disrupting chemicals. Endocr Rev 36(6):593–602. https://doi.org/10.1210/er.2015-1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40(1):241–258. https://doi.org/10.1016/j.etap.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  7. Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G et al (2017) Thyroid hormones and cardiovascular disease. Nat Rev Cardiol 14(1):39–55. https://doi.org/10.1038/nrcardio.2016.174

    Article  CAS  PubMed  Google Scholar 

  8. Wirth EK, Meyer F (2017) Neuronal effects of thyroid hormone metabolites. Mol Cell Endocrinol 458:136–142. https://doi.org/10.1016/j.mce.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Chung SM, Moon JS, Yoon JS, Won KC, Lee HW (2019) Sex-specific effects of blood cadmium on thyroid hormones and thyroid function status: Korean nationwide cross-sectional study. J Trace Elem Med Biol 53:55–61. https://doi.org/10.1016/j.jtemb.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  10. Dolgova NV, Nehzati S, MacDonald TC, Summers KL, Crawford AM et al (2019) Disruption of selenium transport and function is a major contributor to mercury toxicity in zebrafish larvae. Metallomics 11(3):621–631. https://doi.org/10.1039/c8mt00315g

    Article  CAS  PubMed  Google Scholar 

  11. Zadjali SA, Nemmar A, Fahim MA, Azimullah S, Subramanian D et al (2015) Lead exposure causes thyroid abnormalities in diabetic rats. Int J Clin Exp Med 8(5):7160–7167

    PubMed  PubMed Central  Google Scholar 

  12. Jain RB, Choi YS (2016) Interacting effects of selected trace and toxic metals on thyroid function. Int J Environ Health Res 26(1):75–91. https://doi.org/10.1080/09603123.2015.1020416

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Chen H, Zhang L, Zhang T, Ren X (2020) The association between thyroid injury and apoptosis, and alterations of Bax, Bcl-2, and caspase-3 mRNA/protein expression induced by nickel sulfate in Wistar rats. Biol Trace Elem Res 195(1):159–168. https://doi.org/10.1007/s12011-019-01825-0

    Article  CAS  PubMed  Google Scholar 

  14. Yao Y, Costa M (2014) Toxicogenomic effect of nickel and beyond. Arch Toxicol 88(9):1645–1650. https://doi.org/10.1007/s00204-014-1313-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo H, Chen L, Cui H, Peng X, Fang J et al (2015) Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci 17(1). https://doi.org/10.3390/ijms17010010

  16. Zheng GH, Liu CM, Sun JM, Feng ZJ, Cheng C (2014) Nickel-induced oxidative stress and apoptosis in Carassius auratus liver by JNK pathway. Aquat Toxicol 147:105–111. https://doi.org/10.1016/j.aquatox.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Towers CG, Thorburn A (2016) Therapeutic targeting of autophagy. EBioMedicine 14:15–23. https://doi.org/10.1016/j.ebiom.2016.10.034

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091865

  19. Zheng T, Xu C, Mao C, Mou X, Wu F et al (2018) Increased interleukin-23 in Hashimoto's thyroiditis disease induces autophagy suppression and reactive oxygen species accumulation. Front Immunol 9:96. https://doi.org/10.3389/fimmu.2018.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu C, Wu F, Mao C, Wang X, Zheng T et al (2016) Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. J Autoimmun 75:50–57. https://doi.org/10.1016/j.jaut.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  21. Kurashige T, Nakajima Y, Shimamura M, Matsuyama M, Yamada M et al (2019) Basal autophagy deficiency causes thyroid follicular epithelial cell death in mice. Endocrinology 160(9):2085–2092. https://doi.org/10.1210/en.2019-00312

    Article  CAS  PubMed  Google Scholar 

  22. Son YO, Pratheeshkumar P, Divya SP, Zhang Z, Shi X (2017) Nuclear factor erythroid 2-related factor 2 enhances carcinogenesis by suppressing apoptosis and promoting autophagy in nickel-transformed cells. J Biol Chem 292(20):8315–8330. https://doi.org/10.1074/jbc.M116.773986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang YT, Hsu WC, Wu CH, Hsin IL, Wu PR et al (2017) Metformin alleviates nickel-induced autophagy and apoptosis via inhibition of hexokinase-2, activating lipocalin-2, in human bronchial epithelial cells. Oncotarget 8(62):105536–105552. https://doi.org/10.18632/oncotarget.22317

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S et al (1989) Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Br J Cancer 60(6):897–903. https://doi.org/10.1038/bjc.1989.387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong A, Ye S, Xiong E, Guo W, Zhang Y et al (2013) Autophagy contributes to ING4-induced glioma cell death. Exp Cell Res 319(12):1714–1723. https://doi.org/10.1016/j.yexcr.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  26. Pan YL, Xin R, Wang SY, Wang Y, Zhang L et al (2018) Nickel-smelting fumes induce mitochondrial damage and apoptosis, accompanied by decreases in viability, in NIH/3T3 cells. Arch Biochem Biophys 660:20–28. https://doi.org/10.1016/j.abb.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  27. Siddiqui MA, Ahamed M, Ahmad J, Majeed Khan MA, Musarrat J et al (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50(3-4):641–647. https://doi.org/10.1016/j.fct.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Kong L (2020) Advance on toxicity of metal nickel nanoparticles. Environ Geochem Health 42(7):2277–2286. https://doi.org/10.1007/s10653-019-00491-4

    Article  CAS  PubMed  Google Scholar 

  29. Cambre MH, Holl NJ, Wang B, Harper L, Lee HJ et al (2020) Cytotoxicity of NiO and Ni(OH)(2) nanoparticles is mediated by oxidative stress-induced cell death and suppression of cell proliferation. Int J Mol Sci 21(7). https://doi.org/10.3390/ijms21072355

  30. Terpilowska S, Siwicki AK (2019) Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium(iii), iron(iii), molybdenum(iii) or nickel(ii) and their mixtures. Toxicol Res (Camb) 8(2):188–195. https://doi.org/10.1039/c8tx00233a

    Article  CAS  Google Scholar 

  31. Ma C, Song M, Zhang Y, Yan M, Zhang M et al (2014) Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep 1:114–121. https://doi.org/10.1016/j.toxrep.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu Y, Ma J, Sun Y, Tang M, Kong L (2020) Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere 255:126913. https://doi.org/10.1016/j.chemosphere.2020.126913

    Article  CAS  PubMed  Google Scholar 

  33. Cavalli G, Cenci S (2020) Autophagy and protein secretion. J Mol Biol 432(8):2525–2545. https://doi.org/10.1016/j.jmb.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  34. Li X, He S, Ma B (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12. https://doi.org/10.1186/s12943-020-1138-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544. https://doi.org/10.4161/auto.19496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das S, Reddy RC, Chadchan KS, Patil AJ, Biradar MS et al (2020) Nickel and oxidative stress: cell signaling mechanisms and protective role of vitamin C. Endocr Metab Immune Disord Drug Targets 20(7):1024–1031. https://doi.org/10.2174/1871530319666191205122249

    Article  CAS  PubMed  Google Scholar 

  37. Lee P, Chandel NS, Simon MC (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 21(5):268–283. https://doi.org/10.1038/s41580-020-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martínez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E (2020) The p38 pathway: from biology to cancer therapy. Int J Mol Sci 21(6). https://doi.org/10.3390/ijms21061913

  39. Athamneh K, Alneyadi A, Alsamri H, Alrashedi A, Palakott A et al (2020) Origanum majorana essential oil triggers p38 MAPK-mediated protective autophagy, apoptosis, and caspase-dependent cleavage of P70S6K in colorectal cancer cells. Biomolecules 10(3). https://doi.org/10.3390/biom10030412

  40. Comb WC, Cogswell P, Sitcheran R, Baldwin AS (2011) IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene 30(14):1727–1732. https://doi.org/10.1038/onc.2010.553

    Article  CAS  PubMed  Google Scholar 

  41. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E et al (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29(3):619–631. https://doi.org/10.1038/emboj.2009.364

    Article  CAS  PubMed  Google Scholar 

  42. Zhong W, Zhu H, Sheng F, Tian Y, Zhou J et al (2014) Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells. Autophagy 10(7):1285–1300. https://doi.org/10.4161/auto.28789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786. https://doi.org/10.1007/s00204-013-1110-9

    Article  CAS  PubMed  Google Scholar 

  44. Han J, Wu J, Silke J (2020) An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 9. https://doi.org/10.12688/f1000research.22092.1

  45. Liu K, Zhang L, Zhao Q, Zhao Z, Zhi F et al (2018) SKP2 attenuates NF-κB signaling by mediating IKKβ degradation through autophagy. J Mol Cell Biol 10(3):205–215. https://doi.org/10.1093/jmcb/mjy012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all those who participated in this study.

Funding

This study was supported by the Program for National Natural Science Foundation of China (31670518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Chen, H. & Liu, Y. Nickel Sulfate Induces Autophagy in Human Thyroid Follicular Epithelial Cells. Biol Trace Elem Res 200, 122–133 (2022). https://doi.org/10.1007/s12011-021-02643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02643-z

Keywords

Navigation