Skip to main content
Log in

Pollen and Chemical Content of Beebreads from Serpentine Areas in Albania and Bulgaria

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Beebread from serpentine localities in Albania and Bulgaria were characterized based on their pollen and chemical element content (macroelements K, Ca, Mg, P and microelements Cd, Co, Cr, Cu, Fe, Mn, Na, Ni, Pb, Zn) aiming to (1) evaluate the effect of serpentine soil on the quality of beebread; (2) compare elemental concentrations in samples from serpentine areas in Albania and Bulgaria; and (3) compare the differences in pollen spectra. Chemical element content was determined using microwave digestion of beebread samples followed by ICP-OES measurements. The analytical procedure developed was validated by added/found method. Analytical figures of merit of analytical method proposed were presented. The melissopalynological analysis was applied for pollen characterization. The results demonstrate clear difference in the pollen spectra between the two sets of samples, confirming differences in local serpentine flora in both countries, but specific pollen type is difficult to be suggested. The pollen content is related to the flowering period, climatic conditions, and bees forage preferences. The samples vary in their elemental concentrations depending on the pollen type and year of collection. The highest average concentrations found for K, Ca, Mg, and P are close to values reported in the literature. However, elevated concentrations observed for Ni, Cr, Mn, and Fe in beebread, especially from Albania, are in line with the serpentine characteristics of studied areas. The concentrations of Cd and Pb for all beebread samples are below permissible limits. The results should be taken into consideration in future specific food safety regulations at national and international level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Bobis O, Marghitas LA, Dezmirean D, Morar O, Bonta V, Chirila F (2010) Quality parameters and nutritional value of different commercial bee products. Bulletin of University of agricultural sciences and veterinary medicine Cluj–Napoca. Ani Sci Biotechnol 67:1–2. https://doi.org/10.15835/buasvmcn-asb:67:1-2:5254

    Article  Google Scholar 

  2. Bogdanov S, Lüllmann C, Martin P, von der Ohe W, Russmann H, Vorwohl G, Oddo LP, Sabatini AG, Marcazzan GL, Piro R, Flamini C, Morlot M, Lhéritier J, Borneck R, Marioleas P, Tsigouri A, Kerkvliet J, Ortiz A, Ivanov T, D'Arcy B, Mossel B, Vit P (2015) Honey quality and international regulatory standards: review by the international honey Commission. Bee World 80(2):61–69. https://doi.org/10.1080/0005772X.1999.11099428

    Article  Google Scholar 

  3. Kieliszek M, Piwowarek K, Kot A, Błażejak S, Chlebowska-Śmigiel A, Wolska I (2018) Pollen and beebread as new health-oriented products: a review. Trends Food Sci Technol 71:170–180. https://doi.org/10.1016/j.tifs.2017.10.021

    Article  CAS  Google Scholar 

  4. Urcan A, Mărghitaş L, Dezmirean D, Bobiş O, Bonta V, Mureşan K, Mărgăoan R (2017) Chemical composition and biological activities of beebread – review. Bull Univ Agric Sci Vet Med Cluj-Napoca Ani Sci Biotechnol 74(1):6–14. https://doi.org/10.15835/buasvmcn-asb:12646

    Article  CAS  Google Scholar 

  5. Campos M, Frigerio C, Lopes J, Bogdanov S (2010) What is the future of Bee-Pollen? J Api Prod Api Med Sci 2(4):131–144. https://doi.org/10.3896/IBRA.4.02.4.01

    Article  Google Scholar 

  6. Bogdanov S (2011) Functional and biological properties of the bee products: a review. The Pollen Book. 2. Bee Product Science. www.bee-hexagon.net

  7. Barene I, Daberte I, Siksna S (2015) Investigation of beebread and development of its forms. MedTeor Pract 21(1):16–22. https://doi.org/10.15591/mtp.2015.003

    Article  Google Scholar 

  8. Bleha R, Shevtsova T, Kružik V, Šorpilová T, Saloň I, Erban V, Brindza J, Brovarskyi V, Sinica V (2019) Beebreads from Eastern Ukraine: composition, physical properties and biological activities. Czech J Food Sci 37(1):9–20. https://doi.org/10.17221/201/2018-CJFS

    Article  CAS  Google Scholar 

  9. Bogdanov S (2004) Quality and standards of pollen and beeswax. Apiacta 38:334–341

    Google Scholar 

  10. Markiewicz-Żukowska R, Naliwajko SK, Bartosiuk E, Moskwa J, Isidorov V, Soroczyńska J, Borawska MH (2013) Chemical composition and antioxidant activity of beebread, and its influence on the glioblastoma cell line (U87MG). J Apic Sci 57(2):147–157. https://doi.org/10.2478/jas-2013-0025

    Article  CAS  Google Scholar 

  11. Dimou M, Thananaki C, Liolios V, Thrasyvoulou A (2014) Pollen foraging by honeybees (Apis mellifera L.) in Greece: botanical and geographical origin. J Apic Sci 58(2):11–23. https://doi.org/10.2478/jas-2014-0018

    Article  Google Scholar 

  12. Zhelyazkova I, Atanasova S, Barakova V, Mihaylova G (2010) Content of heavy metals and metalloids in bees and bee products from areas with different degree of anthropogenic impact. Agric Sci Technol 3(1):136–142

    Google Scholar 

  13. Atanassova J, Pavlova D, Lazarova M, Yurukova L (2016) Characteristics of honey from serpentine area in the Eastern Rhodopes Mt., Bulgaria. Biol Trace Elem Res 173(1):247–258. https://doi.org/10.1007/s12011-015-0616-9

    Article  CAS  PubMed  Google Scholar 

  14. Stanciu OG, Mărghitaş L, Dezmirean D (2009) Macro-and oligo-mineral elements from honeybee-collected pollen and beebread harvested from Transylvania (Romania). Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim Sci Biotechnol 66:1–2. https://doi.org/10.15835/buasvmcn-asb:66:1-2:3368

    Article  Google Scholar 

  15. Anđelković B, Jevtić G, Mladenović M, Marković J, Petrović M, Nedić N (2012) Quality of pollen and honey beebread collected in spring. J Hyg Eng Des 1:275–277

    Google Scholar 

  16. Roman A, Popiela-Pleban E, Migdał P, Kruszyński W (2016) As, Cr, Cd, and Pb in bee products from a Polish industrialized region. Open Chem 14:33–36. https://doi.org/10.1515/chem-2016-0007

    Article  CAS  Google Scholar 

  17. Bakour M, Fernandes Â, Barros L, Sokovic M, Ferreira I, Lyoussi B (2019) Beebread as a functional product: chemical composition and bioactive properties. LWT Food Sci Technol 109:276–282. https://doi.org/10.1016/j.lwt.2019.02.008

    Article  CAS  Google Scholar 

  18. Murashova EA, Tunikov GM, Nefedova SA, Karelina OA, Byshova NG, Serebryakova OV (2020) Major Factors determining accumulation of toxic elements by bees and honey products. Int Trans J Eng, Manag Appl Sci Technol 11(3):1–14. https://doi.org/10.14456/ITJEMAST.2020.54

    Article  Google Scholar 

  19. Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18. https://doi.org/10.1051/apido:2005043

    Article  CAS  Google Scholar 

  20. Bulgarian Ministry of Agriculture and Forests (2005) Ordinance№ 48/11.11.2003 on the procedure and methods of sampling and analysis of honey. State Newspaper no. 103/01.09.2005. http://www. lex.bg/bg/laws/ldoc/2135474656. Accessed 30 Sept 2020 (in Bulgarian)

  21. Lenntech (2020) Recommended daily intake of vitamins and minerals. https://www.lenntech.com/recommended-daily-intake.htm#ixzz27P3CVWjr. Accessed 30 Sept 2020

  22. Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22(1):99–106

    CAS  Google Scholar 

  23. Altunatmaz S, Tarhan D, Aksu F, Barutçu U, Or M (2017) Mineral element and heavy metal (cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Sci Technol 37(Suppl 1):136–141. https://doi.org/10.1590/1678-457x.36016

    Article  Google Scholar 

  24. Astolfi ML, Conti ME, Marconi E, Massimi L, Canepari S (2020) Effectiveness of different sample treatments for the elemental characterization of bees and beehive products. Molecules 25(18):4263. https://doi.org/10.3390/molecules25184263

    Article  CAS  PubMed Central  Google Scholar 

  25. Pohl P, Dzimitrowicz A, Greda K, Jamroz P, Lesniewicz A, Szymczycha-Madeja A, Welna M (2020) Element analysis of bee-collected pollen and beebread by atomic and mass spectrometry – methodological development in addition to environmental and nutritional aspects. Trends Anal Chem 128:e115922. https://doi.org/10.1016/j.trac.2020.115922

    Article  CAS  Google Scholar 

  26. De Freitas Santos Junior A, Brandao GC, Santos Junior MC, FAR S, HIF M, MGA K (2020) Multi-element composition, physicochemical and pollen attributes of honeys from the Paraguaçu River (Bahia, Brazil) by inductively coupled plasma-optical emission spectrometry (ICP OES). An Acad Bras Cienc 92(3):e20181196-1-15. https://doi.org/10.1590/0001-3765202020181196

    Article  CAS  Google Scholar 

  27. Oliveira SS, Alves CN, Morte ESB, De Freitas Santos Junior A, Araujo RGO, Santos DCMB (2019) Determination of essential and potentially toxic elements and their estimation of bioaccessibility in honeys. Microchem J 151:104221. https://doi.org/10.1016/j.microc.2019.104221

    Article  CAS  Google Scholar 

  28. Da Cruz Ferreira R, de Souza Dias F, de Aragão Tannus C et al. (2020) Essential and potentially toxic elements from Brazilian geopropolis produced by the stingless bee Melipona quadrifasciata anthidioides using ICP OES. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02455-7

  29. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves R, Morel J-L, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Botanica Serbica 34(1):3–14

    Google Scholar 

  30. Moraliysky E, Goceva A (1989) Temperature of the air. In: Michev K, Velchev V, Zjapkov L, Velev S, Ch T (eds) Natural and economic potential of the mountains in Bulgaria. I. Nature and Resources. Publishing House of Bulgarian Academy of Sciences, Sofia, pp 79–85 (in Bulgarian)

    Google Scholar 

  31. Louveaux J, Maurizio A, Vorwohl G (1978) Methods of melissopalynology. Bee World 59:139–157

    Article  Google Scholar 

  32. Beug H-J (2004) Leitfaden der Pollenbestimmung furMitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  33. Brooks R (1987) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  34. Liolios V, Tananaki C, Dimou M, Kanelis D, Goras G, Karazafiris E, Thrasyvoulou A (2016) Ranking pollen from bee plants according to their protein contribution to honeybees. J Apic Res 54(5):582–592. https://doi.org/10.1080/00218839.2016.1173353

    Article  Google Scholar 

  35. Ph D, Rhodes G, Pickup R, Jones K, Power E, Wright G, Wilson K (2017) Nutritional composition of honey bee food stores vary with floral composition. Oecologia 185:749–761. https://doi.org/10.1007/s00442-017-3968-3

    Article  Google Scholar 

  36. Linskens HF, Jorde W (1997) Pollen as food and medicine: a review. Econ Bot 51(1):78–86. https://doi.org/10.1007/BF02910407

    Article  Google Scholar 

  37. Negrão A, Barreto L, Orsi R (2014) Influence of the collection season on production, size, and chemical composition of bee pollen produced by Apis mellifera L. J Apic Sci 58(2):5–10. https://doi.org/10.2478/jas-2014-0017

    Article  CAS  Google Scholar 

  38. Bani A, Echevarria G, Sulce S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  CAS  Google Scholar 

  39. Pavlova D (2001) Mountain vegetation on serpentine areas in the Bulgarian Eastern and Central Rhodopes Mts.-ecology and conservation. In: Radoglou K (ed) Proceedings of International Conference: Forest Research: a challenge for an integrated European approach, vol 1. NAGREF-Forest Research Institute, Thessaloniki, pp 227–232

    Google Scholar 

  40. Pavlova D (2007) Endemics and rare plants growing on serpentines in the Rhodopes mountains (Bulgaria). In: Filipovski G, Lozanovski R, Matevski V (eds) Collection of papers devoted to academician Kiril Micevski: on the occasion of the 80 years of his birth. Macedonian Acad Sci & Arts, Skopje, pp 157–170

    Google Scholar 

  41. Babalonas D (1989) Beitrag zur Flora des serpentinischen Vourinos-Gebirges (Nordgriechenland). Willdenowia 18:387–399

    Google Scholar 

  42. Selvi F (2007) Diversity, geographic variation and conservation of the serpentine flora of Tuscany (Italy). Biodivers Conserv 16:1423–1439

    Article  Google Scholar 

  43. Lau P, Bryant V, Ellis JD, Huang ZY, Sullivan J, Schmehl D, Cabrera A, Rangel J (2019) Seasonal variation of pollen collected by honeybees (Apis mellifera) in developed areas across four regions in the United States. PLoS One 14(6):e0217294. https://doi.org/10.1371/journal.pone.0217294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghosh S, Jeon H, Jung C (2020) Foraging behavior and preference of pollen sources by honeybee (Apis mellifera) relative to protein contents. J Ecol Environ 44(4):1–7. https://doi.org/10.1186/s41610-020-0149-9

    Article  Google Scholar 

  45. Dimou M, Thrasyvoulou A (2007) Seasonal variation in vegetation and pollen collected by honeybees in Thessaloniki, Greece. Grana 46:292–299. https://doi.org/10.1080/00173130701760718

    Article  Google Scholar 

  46. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411. https://doi.org/10.1111/nph.14907

    Article  PubMed  Google Scholar 

  47. Pavlova D, De la Fuente V, Sanchez-Mata D, Rufo L (2016) Pollen morphology and localization of Ni in some Ni-hyperaccumulator taxa of Alyssum L. (Brassicaceae). Plant Biosyst 150(4):671–681. https://doi.org/10.1080/11263504.2014.989284

    Article  Google Scholar 

  48. Brunet J, Thairu MW, Henss JM, Link RI, Kluever JA (2015) The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous. Int J Plant Sci 176(9):811–819. https://doi.org/10.1086/683339

    Article  Google Scholar 

  49. Isidorov VA, Isidorova AG, Szczepaniak L, Czyżewska U (2009) Gas chromatographic–mass spectrometric investigation of the chemical composition of beebread. Food Chem 115(3):1056–1063. https://doi.org/10.1016/j.foodchem.2008.12.025

    Article  CAS  Google Scholar 

  50. Reeves R (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO Science Series (IV) Earth and Environmental sciences, vol 68. Springer, Dordrecht, pp 25–52

    Google Scholar 

  51. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  52. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–1. https://doi.org/10.1016/j.plantsci.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  53. Meindl GA, Bain DJ, Ashman T-L (2013) Edaphic factors and plant-insect interactions: effects of soil chemistry on pollination and florivory. Oecologia 173:1355–1366. https://doi.org/10.1007/s00442-013-2711-y

    Article  PubMed  Google Scholar 

  54. Cirić J, Spirić D, Baltić B, Janjić J, Petronijević R, Simunović S, Djordjević V (2019) Element concentration and fatty acid composition of Serbian bee bread. Earth Environ Sci 333:012050. https://doi.org/10.1088/1755-1315/333/1/012050

    Article  Google Scholar 

  55. Ramalhosa E, Magalhaes M, Afonso MJ, Plasencia P, Saraiva D, Azevedo J, Castro M (2013) Metal contents in honey and mushrooms from serpentine soils in the Morais site, Portugal. In: Petrotos D, Filintas A (eds) Proceedings of FaBE International Conferences on Food and Biosystems Engineering, 30 May – 02 June 2013, Skiathos Island Greece 1:167–173.

  56. Salihaj M, Bani A (2017) The nickel content in honey derived from serpentine and non-serpentine areas of Kosovo. Albanian J Agric Sci, Special edition (open access), 557-563. https://f039217e-a-d32f1b3a-s-sites.googlegroups.com. Accessed 26 Jan 2021

  57. Al Naggar YA, Naiem El-S A, Seif AI, Mona MH (2013) Honeybees and their products as bio-indicator of environmental pollution with heavy metals. Mellifera 13-26:10–20

    Google Scholar 

  58. Bogdanov S, Haldimann M, Luginbuhl W, Gallmann P (2007) Minerals in honey: environmental, geographical and botanical aspects. J Apic Res Bee World 46(4):269–275. https://doi.org/10.1080/00218839.2007.11101407

    Article  CAS  Google Scholar 

  59. Zhelyazkova I (2018) Assessment of heavy metals content in pollen from the combs (beebread) in regions with different anthropogenic impact. Macedonian J Anim Sci 8(1):47–53

    Google Scholar 

  60. Pavlova D, Bani A (2019) Pollen biology of the serpentine-endemic Orobanche nowackiana (Orobanchaceae) from Albania. Aust J Bot 67(5):381–389. https://doi.org/10.1071/BT18165

    Article  CAS  Google Scholar 

  61. Omran N, Omar M, Hussein M, Abd-Allah M (2019) Heavy metals concentrations in bee products collected from contaminated and non-contaminated areas from Upper Egypt Governorates. J Advan Agric 10:1657–1666. https://doi.org/10.24297/jaa.v10i0.8149

    Article  Google Scholar 

  62. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press Taylor and Francis Group, Boca Raton

    Google Scholar 

  63. The Commission of the European Community (2015) Commission Regulation (EU) 2015/1005 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. Off J Eur Union 161:9–13

    Google Scholar 

  64. Alimentarius C (2001) Joint FAO/WHO Food Standards Programme; Twenty-fourth Session. Codex Alimentarius Commission, Geneva

    Google Scholar 

Download references

Code Availability

Not applicable for this study.

Funding

This work was supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Healthy Foods for a Strong Bio-Economy and Quality of Life” approved by DCM # 577/17.08.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolja Pavlova.

Ethics declarations

Ethics Approval

No approval of research ethics committees was required to accomplish the goals of this study.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

The authors have consented to the submission of the results to the journal

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, D., Atanassova, J., Karadjova, I. et al. Pollen and Chemical Content of Beebreads from Serpentine Areas in Albania and Bulgaria. Biol Trace Elem Res 200, 413–425 (2022). https://doi.org/10.1007/s12011-021-02638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02638-w

Keywords

Navigation