Skip to main content
Log in

Effects of a Novel Magnesium Complex on Metabolic and Cognitive Functions and the Expression of Synapse-Associated Proteins in Rats Fed a High-Fat Diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to compare the effects of a novel form of magnesium, Mg picolinate (MgPic), to magnesium oxide (MgO) on metabolic and cognitive functions and the expression of genes associated with these functions in rats fed a high-fat diet (HFD). Forty-two Wistar rats were divided into six groups: control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was supplemented at 500 mg of elemental Mg/kg diet for 8 weeks. MgPic and MgO supplementation decreased visceral fat, serum glucose, insulin, leptin, TC, TG, FFA, testosterone, FSH, LH, SHBG, IGF-1, and MDA levels, but increased brain SOD, CAT, and GSH-Px activities in HFD rats. Inflammation and cognitive-related markers (presynaptic synapsin PSD95, postsynaptic PSD93, postsynaptic GluR1, and GluR2) were improved in HFD rats administered Mg, with more significant effects seen in the MgPic group. MgPic also decreased brain NF-κB but elevated brain Nrf2 levels, compared with the HFD group. The phosphorylation levels of Akt (Thr308), Akt (Ser473), PI3K try 458/199, and Ser9-GSK-3 in the brain were improved after Mg treatment in HFD rats, with more potent effects seen from MgPic supplementation. MgPic has a higher bioavailability and is more effective in improving metabolic parameters and enhancing memory than MgO. The pro-cognitive effects of MgO and MgPic could be mediated via modulation of the AMPA-type glutamate receptor and activation of the PI3K-Akt–GSK-3β signaling pathway. These findings further support the use of MgPic in the management of metabolic and cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available within the article.

References

  1. Akiyama T, Tachibana I, Shirohara H, Watanabe N, Otsuki M (1996) High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Res Clin Pract 31(1-3):27–35. https://doi.org/10.1016/0168-8227(96)01205-3

    Article  CAS  PubMed  Google Scholar 

  2. Tzanavari T, Giannogonas P, Karalis KP (2010) TNF-alpha and obesity. Curr Dir Autoimmun 11:145–156. https://doi.org/10.1159/000289203

    Article  CAS  PubMed  Google Scholar 

  3. Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R (2015) Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: Significance for metabolic inflammation. PLoS One 10(7):e0133494. https://doi.org/10.1371/journal.pone.0133494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMurray F, Patten DA, Harper ME (2016) Reactive oxygen species and oxidative stress in obesity-recent findings and empirical approaches. Obesity (Silver Spring) 24(11):2301–2310. https://doi.org/10.1002/oby.21654

    Article  CAS  Google Scholar 

  5. Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Yacoub ONA (2018) Banihani SA The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Physiol Behav. 196:1–7. https://doi.org/10.1016/j.physbeh.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  6. Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M (2012) Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 15(3):159–165. https://doi.org/10.3109/13685538.2012.669436

    Article  CAS  PubMed  Google Scholar 

  7. Rajan TM, Menon V (2017) Psychiatric disorders and obesity: a review of association studies. J Postgrad Med 63(3):182–190. https://doi.org/10.4103/jpgm.JPGM_712_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ (2004) Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care 27(4):861–868. https://doi.org/10.2337/diacare.27.4.861

    Article  CAS  PubMed  Google Scholar 

  9. Lima ML, Pousada J, Barbosa C, Cruz T (2005) Magnesium deficiency and insulin resistance in patients with type 2 diabetes mellitus. Arq Bras Endocrinol Metabol 49(6):959–963. https://doi.org/10.1590/s0004-27302005000600016

    Article  Google Scholar 

  10. Chutia H, Lynrah KG (2015) Association of serum magnesium deficiency with insulin resistance in type 2 diabetes mellitus. J Lab Physicians 7(2):75–78. https://doi.org/10.4103/0974-2727.163131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suárez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A (1995) Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 38(11):1262–1270. https://doi.org/10.1007/BF00401757

    Article  PubMed  Google Scholar 

  12. Bitel CL, Kasinathan C, Kaswala RH, Klein WL, Frederikse PHJ (2012) Amyloid-β and tau pathology of Alzheimer’s disease induced by diabetes in a rabbit animal model. J Alzheimers Dis 32(2):291–305. https://doi.org/10.3233/JAD-2012-120571

    Article  CAS  PubMed  Google Scholar 

  13. Lowney P, Hannon TS, Baron AD (1995) Magnesium deficiency enhances basal glucose disposal in the rat. Am J Physiol 268(5 Pt 1):E925–E931. https://doi.org/10.1152/ajpendo.1995.268.5.E925

    Article  CAS  PubMed  Google Scholar 

  14. Yin X, Wu OM, Wang H, Hobbs EC, Shabalina SA, Storz G (2018) The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol Microbiol 111(1):131–144. https://doi.org/10.1111/mmi.14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ford ES, Mokdad AH (2003) Dietary magnesium intake in a national sample of US adults. J Nutr 133(9):2879–2882. https://doi.org/10.1093/jn/133.9.2879

    Article  CAS  PubMed  Google Scholar 

  16. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  17. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bardgett ME, Schultheis PJ, McGill DL, Richmond RE, Wagge JR (2005) Magnesium deficiency impairs fear conditioning in mice. Brain Res 1038(1):100–106. https://doi.org/10.1016/j.brainres.2005.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, Li XG, Huang RX, Gao D, Li MZ, Zhang Y, Liu GP, Wang JZ (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One 9(9):e108645. https://doi.org/10.1371/journal.pone.0108645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu J, Sun M, Chen Z, Lu J, Liu Y, Zhou L, Xu X, Fan D, Chui D (2010) Magnesium modulates amyloid-beta protein precursor trafficking and processing. J Alzheimers Dis 20(4):1091–1106. https://doi.org/10.3233/JAD-2010-091444

    Article  CAS  PubMed  Google Scholar 

  21. Gao F, Li JM, Xi C, Li HH, Liu YL, Wang YP, Xuan LJ (2019) Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol Sin 40(7):867–878. https://doi.org/10.1371/journal.pone.0108645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sohrabipour S, Sharifi MR, Sharifi M, Talebi A, Soltani N (2018) Effect of magnesium sulfate administration to improve insulin resistance in type 2 diabetes animal model: using the hyperinsulinemic-euglycemic clamp technique. Fundam Clin Pharmacol 32(6):603–616. https://doi.org/10.1111/fcp.12387

    Article  CAS  PubMed  Google Scholar 

  23. Kamran M, Kharazmi F, Malekzadeh K, Talebi A, Khosravi F, Soltani N (2018) Effect of long-term administration of oral magnesium sulfate and insulin to reduce streptozotocin-induced hyperglycemia in rats: the role of Akt2 and IRS1 gene expressions. Biol Trace Elem Res 190(2):396–404. https://doi.org/10.1007/s12011-018-1555-z

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Qian ZY, Zhou PH, Zhou XL, Zhang DL, He N, Zhang J, Liu YH, Gu Q (2018) Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis 17(1):165. https://doi.org/10.1186/s12944-018-0815-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. EEC (1986) Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. OJEC 358:1–29

    Google Scholar 

  26. Bertinato J, Plouffe LJ, Lavergne C, Ly C (2014) Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet. Magnes Res 27(4):175–185. https://doi.org/10.1684/mrh.2014.0374

    Article  CAS  PubMed  Google Scholar 

  27. Yulug B, Kilic E, Altunay S, Ersavas C, Orhan C, Dalay A, Tuzcu M, Sahin N, Juturu V, Sahin K (2018) Cinnamon polyphenol extract exerts neuroprotective activity in traumatic brain injury in male mice. CNS Neurol Disord Drug Targets 17(6):439–447. https://doi.org/10.2174/1871527317666180501110918

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Wang LP, Tang H, Shan WY, Wang X, Liu D, Wu YY, Tian Q, Wang JZ, Zhu LQ (2014) Acetyl-L-carnitine rescues scopolamine-induced memory deficits by restoring insulin-like growth factor II via decreasing p53 oxidation. Neuropharmacology 76(Pt A):80–87. https://doi.org/10.1016/j.neuropharm.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  29. Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH, Güler O, Kahraman N, Kucuk O, Ozpolat B (2018) Chemopreventive and antitumor efficacy of curcumin in a spontaneously developing hen ovarian cancer model. Cancer Prev Res (Phila) 11(1):59–67. https://doi.org/10.1158/1940-6207.CAPR-16-0289

    Article  CAS  Google Scholar 

  30. Castellanos-Gutiérrez A, Sánchez-Pimienta TG, Carriquiry A, da Costa THM, Ariza AC (2018) Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr J 17(1):114. https://doi.org/10.1186/s12937-018-0422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou W, Guo R, Guo W, Hong J, Li L, Ni L, Jinyuan S, Bin L, Pingfan R, Xucong L (2019) Monascus yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet. Food Funct 10(2):1073–1084. https://doi.org/10.1039/c8fo02192a

    Article  CAS  PubMed  Google Scholar 

  32. Jeong JW, Lee B, Kim DH, Jeong HO, Moon KM, Kim MJ, Yokozawa T, Chung HY (2018) Mechanism of action of magnesium Lithospermate B against aging and obesity-induced ER stress, insulin resistance, and inflammsome formation in the liver. Molecules 23(9):2098. https://doi.org/10.3390/molecules23092098

    Article  CAS  PubMed Central  Google Scholar 

  33. Anetor JI, Senjobi A, Ajose OA, Agbedana EO (2002) Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health 16(4):291–300. https://doi.org/10.1177/026010600201600403

    Article  CAS  PubMed  Google Scholar 

  34. Solaimani H, Soltani N, MaleKzadeh K, Sohrabipour S, Zhang N, Nasri S, Wang Q (2014) Modulation of GLUT4 expression by oral administration of Mg (2+) to control sugar levels in STZ-induced diabetic rats. Can J Physiol Pharmacol 92(6):438–444. https://doi.org/10.1139/cjpp-2013-0403

    Article  CAS  PubMed  Google Scholar 

  35. Mills JG, Larkin TA, Deng C, Thomas SJ (2019) Weight gain in major depressive disorder: Linking appetite and disordered eating to leptin and ghrelin. Psychiatry Res 279:244–251. https://doi.org/10.1016/j.psychres.2019.03.017

    Article  PubMed  Google Scholar 

  36. Corsonello A, Malara A, De Domenico D, Mirone S, Loddo S, Ientile R, Corica F (2005) Effects of magnesium sulphate on leptin-dependent platelet aggregation: an ex vivo study. Magnes Res 18(1):7–11

    CAS  PubMed  Google Scholar 

  37. Devaux S, Adrian M, Laurant P, Berthelot A, Quignard-Boulangé A (2016) Dietary magnesium intake alters age-related changes in rat adipose tissue cellularity. Magnes Res 29(4):175–183. https://doi.org/10.1684/mrh.2016.0406

    Article  CAS  PubMed  Google Scholar 

  38. Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A (2019) Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Arch Biochem Biophys 665:46–56. https://doi.org/10.1016/j.abb.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  39. Mills BJ, Lindeman RD, Lang CA (1986) Magnesium deficiency inhibits biosynthesis of blood glutathione and tumor growth in the rat. Proc Soc Exp Biol Med 181(3):326–332. https://doi.org/10.3181/00379727-181-42260

    Article  CAS  PubMed  Google Scholar 

  40. Yavuz Y, Mollaoglu H, Yurumez Y, Ucok K, Duran L, Tünay K, Akgün L (2013) Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation. Eur Rev Med Pharmacol Sci 17(Suppl 1):28–33

    PubMed  Google Scholar 

  41. Krośniak M, Francik R, Kowalska J, Gryboś R, Blusz M, Kwiatek WM (2013) Effects of vanadium complexes supplementation on V, Fe, Cu, Zn, Mn, Ca and K concentration in STZ diabetic rat’s spleen. Acta Pol Pharm 70(1):71–77

    PubMed  Google Scholar 

  42. Deeh-Defo PB, Wankeu-Nya M, Ngadjui E, Fozin GRB, Kemka FX, Kamanyi A, Kamtchouing P, Watcho P (2017) The methanolic extract of Guibourtia tessmanii (Caesalpiniaceae) improves sexual parameters in high fat diet-induced obese sexually sluggish rats. Asian Pac J Reprod 6(5):202–211. https://doi.org/10.4103/2305-0500.215930

    Article  CAS  Google Scholar 

  43. Tarapore P, Hennessy M, Song D, Ying J, Ouyang B, Govindarajah V, Leung YK, Ho SM (2017) High butter-fat diet and bisphenol A additively impair male rat spermatogenesis. Reprod Toxicol 68:191–199. https://doi.org/10.1016/j.reprotox.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  44. Ramaswamy S, Weinbauer GF (2015) Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. Spermatogenesis 4(2):e996025. https://doi.org/10.1080/21565562.2014.996025

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15–28. https://doi.org/10.1530/rep.1.00358

    Article  CAS  PubMed  Google Scholar 

  46. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783(5):713–727. https://doi.org/10.1016/j.bbamcr.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  47. Xie C, Li X, Zhu J, Wu J, Geng S, Zhong C (2019) Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells. Bioorg Med Chem 27(3):516–524. https://doi.org/10.1016/j.bmc.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, Li C, Shang Y, Huang T, Zhang L (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188. https://doi.org/10.1016/j.bbr.2014.02.040

    Article  CAS  PubMed  Google Scholar 

  49. Cheng J, Chen L, Han S, Qin L, Chen N, Wan Z (2016) Treadmill running and rutin reverse high fat diet induced cognitive impairment in diet induced obese mice. J Nutr Health Aging 20(5):503–508. https://doi.org/10.1007/s12603-015-0616-7

    Article  CAS  PubMed  Google Scholar 

  50. Sadir S, Tabassum S, Emad S, Liaquat L, Batool Z, Madiha S, Shehzad S, Sajid I, Haider S (2019) Neurobehavioral and biochemical effects of magnesium chloride (MgCl2), magnesium sulphate (MgSO4) and magnesium-L-threonate (MgT) supplementation in rats: a dose dependent comparative study. Pak J Pharm Sci 32(1(Supplementary)):277–283

    CAS  PubMed  Google Scholar 

  51. Đurić V, Batinić B, Petrović J, Stanić D, Bulat Z, Pešić V (2018) A single dose of magnesium, as well as chronic administration, enhances long-term memory in novel object recognition test, in healthy and ACTH-treated rats. Magnes Res 31(1):24–32. https://doi.org/10.1684/mrh.2018.0435

    Article  PubMed  Google Scholar 

  52. Kim B, Feldman EL (2015) Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 47(3):e149. https://doi.org/10.1038/emm.2015.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rahimi BM, Motaghinejad M, Motevalian M, Gholami M (2019) Duloxetine by modulating the Akt/GSK3 signaling pathways has neuroprotective effects against methamphetamine-induced neurodegeneration and cognition impairment in rats. Iran J Med Sci 44(2):146–154

    Google Scholar 

  54. Pal I, Mandal M (2012) PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 33(12):1441–1458. https://doi.org/10.1038/aps.2012.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shahab L, Plattner F, Irvine EE, Cummings DM, Edwards FA (2014) Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3–CA1 synapses. Hippocampus 24(12):1413–1416. https://doi.org/10.1002/hipo.22362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang H, Yang X, Qin X, Niu Q (2016) Caspase-3 is involved in aluminum-induced impairment of long-term potentiation in rats through the Akt/GSK-3β pathway. Neurotox Res 29(4):484–494. https://doi.org/10.1007/s12640-016-9597-5

    Article  CAS  PubMed  Google Scholar 

  57. Xian YF, Mao QQ, Wu JCY, Su ZR, Chen JN, Lai XP, Ip SP, Lin ZX (2014) Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J Alzheimer’s Dis 39(2):331–346. https://doi.org/10.3233/JAD-131457

    Article  CAS  Google Scholar 

  58. Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y, Zhang J, Yang J (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 179:162–169. https://doi.org/10.1016/j.jep.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  59. Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300(5):R1053–R1069. https://doi.org/10.1152/ajpregu.00776.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carlisle HJ, Fink AE, Grant SG, O’Dell TJ (2008) Opposing effects of PSD-93 and PSD-95 on long-term potentiation and spike timing-dependent plasticity. J Physiol 586(24):5885–5900. https://doi.org/10.1113/jphysiol.2008.163469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Slutsky I, Sadeghpour S, Li B, Liu G (2004) Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44(5):835–849. https://doi.org/10.1016/j.neuron.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received funding from Nutrition 21 LLC (Purchase, NY, USA) and the Turkish Academy of Sciences (in part, K.S.). The funders were not involved in the study design, collection, analysis, and interpretation of data; the writing of this article; or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Contributions

1) K.S. and C.O. were involved in the conception and design and edited and reviewed the main manuscript text. C.O., M.T., and N.S. performed the experiments and analyzed the data. P.B.D.D., S.S., and S.P.O. drafted the manuscript; J.R.K. revised and edited the manuscript. All authors have read and agreed to the published version of the manuscript. All authors agree to be accountable for all aspects of the work.

2) All authors confirm that our figures/tables are original and have not been published previously.

Corresponding author

Correspondence to Kazim Sahin.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Animal Ethics Committee of Firat University (156-2017/86) and performed following the internationally accepted standard ethical guidelines for laboratory animal use and care as described in the European Community guidelines, EEC Directive 2010/63/EU, of the 22 September 2010.

Consent for Publication

All authors confirm that our figures/tables are original and have not been published previously.

Conflict of Interest

SPO, SS, and JRK are an employee of Nutrition 21, LLC, and New York, USA. Other authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, C., Tuzcu, M., Deeh Defo, P.B. et al. Effects of a Novel Magnesium Complex on Metabolic and Cognitive Functions and the Expression of Synapse-Associated Proteins in Rats Fed a High-Fat Diet. Biol Trace Elem Res 200, 247–260 (2022). https://doi.org/10.1007/s12011-021-02619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02619-z

Keywords

Navigation