Dietary Cholesterol Supplements Disturb Copper Homeostasis in Multiple Organs in Rabbits: Aorta Copper Concentrations Negatively Correlate with the Severity of Atherosclerotic Lesions

Abstract

Dietary cholesterol causes atherosclerosis along with a reduction of copper concentrations in the atherosclerosis wall. This study was to determine the relationship between aorta copper concentrations and the severity of atherosclerotic lesions as well as copper homeostasis in multiple organs in cholesterol-fed rabbits. Male New Zealand white rabbits, 10-week-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as controls. Twelve weeks after the feeding, aortic atherosclerotic lesions, serum cholesterol, and multiple organ copper concentrations were measured. Compared to controls, rabbits fed cholesterol-supplemented diet displayed higher serum cholesterol levels and developed atherosclerosis. Copper concentrations in the cholesterol-fed rabbits were increased in the serum and kidney but decreased in the atherosclerosis wall and multiple organs, including heart, liver, spleen, and lung. Furthermore, aorta copper concentrations negatively correlated, respectively, with the severity of the atherosclerotic lesion (r = − 0.64, p = 0.01), the microscope atherosclerotic lesion area (r = − 0.60, p = 0.02), and the stenosis of the lumen (r = − 0.54, p = 0.04). Dietary cholesterol not only causes atherosclerosis but also disturbs copper homeostasis in multiple organ systems. The negative correlation between aorta copper concentrations and the severity of atherosclerotic lesions suggests a vicious cycle between copper reduction and the pathogenesis of atherosclerosis. These changes in copper homeostasis would be additive to atherosclerosis as a risk factor for cardiovascular disease in humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866. https://doi.org/10.1161/circresaha.114.302721

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Anitsckow N (1913) Uber experimentelle cholesterin steatose und thre bedeutung fur die entstehung einiger. Pathologischer Prozesse Central F Allg Path U Path Anat 24:1–10

    Google Scholar 

  3. 3.

    Steinberg D, Witztum JL (1990) Lipoproteins and atherogenesis. Current concepts. Jama 264(23):3047–3052. https://doi.org/10.1001/jama.1990.03450230083034

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM (1996) The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16(7):831–842. https://doi.org/10.1161/01.atv.16.7.831

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Mayerl C, Lukasser M, Sedivy R, Niederegger H, Seiler R, Wick G (2006) Atherosclerosis research from past to present--on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch 449(1):96–103. https://doi.org/10.1007/s00428-006-0176-7

    Article  PubMed  Google Scholar 

  6. 6.

    Ferns GA, Lamb DJ, Taylor A (1997) The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis 133(2):139–152. https://doi.org/10.1016/s0021-9150(97)00130-5

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Klevay LM (1987) Dietary cholesterol lowers liver copper in rabbits. Biol Trace Elem Res 16(1):51–57. https://doi.org/10.1007/bf02795333

    Article  Google Scholar 

  8. 8.

    Lamb DJ, Avades TY, Allen MD, Anwar K, Kass GE, Ferns GA (2002) Effect of dietary copper supplementation on cell composition and apoptosis in atherosclerotic lesions of cholesterol-fed rabbits. Atherosclerosis 164(2):229–236. https://doi.org/10.1016/s0021-9150(02)00068-0

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lamb DJ, Tickner ML, Hourani SM, Ferns GA (2005) Dietary copper supplements modulate aortic superoxide dismutase, nitric oxide and atherosclerosis. Int J Exp Pathol 86(4):247–255. https://doi.org/10.1111/j.0959-9673.2005.00432.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lamb DJ, Reeves GL, Taylor A, Ferns GA (1999) Dietary copper supplementation reduces atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis 146(1):33–43. https://doi.org/10.1016/s0021-9150(99)00123-9

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Vlad M, Bordas E, Tomus R, Sava D, Farkas E, Uza G (1993) Effect of copper sulfate on experimental atherosclerosis. Biol Trace Elem Res 38(1):47–54. https://doi.org/10.1007/bf02783981

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Vlad M, Uza G, Zirbo M, Olteanu D (1995) Free radicals, ceruloplasmin, and copper concentration in serum and aortic tissue in experimental atherosclerosis. Nutrition 11(5 Suppl):588–591

    CAS  PubMed  Google Scholar 

  13. 13.

    Chisolm GM, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28(12):1815–1826. https://doi.org/10.1016/s0891-5849(00)00344-0

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Itabe H (2009) Oxidative modification of LDL: its pathological role in atherosclerosis. Clin Rev Allergy Immunol 37(1):4–11. https://doi.org/10.1007/s12016-008-8095-9

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL (2003) Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol 41(3):360–370. https://doi.org/10.1016/s0735-1097(02)02769-9

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Tanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, Kanno T, Saito Y (2002) Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 22(4):662–666. https://doi.org/10.1161/01.atv.0000012351.63938.84

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Camejo G, Hurt-Camejo E, Rosengren B, Wiklund O, López F, Bondjers G (1991) Modification of copper-catalyzed oxidation of low density lipoprotein by proteoglycans and glycosaminoglycans. J Lipid Res 32(12):1983–1991

    CAS  Article  Google Scholar 

  18. 18.

    Mosinger BJ (1995) Copper-induced and photosensitive oxidation of serum low-density lipoprotein. The relation to cholesterol level and inter-species differences. Biochim Biophys Acta 1270(1):73–80. https://doi.org/10.1016/0925-4439(94)00074-z

    Article  PubMed  Google Scholar 

  19. 19.

    Graham A (1998) Cellular thiol production and oxidation of low-density lipoprotein. Free Radic Res 28(6):611–621. https://doi.org/10.3109/10715769809065817

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Esterbauer H, Gebicki J, Puhl H, Jürgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13(4):341–390. https://doi.org/10.1016/0891-5849(92)90181-f

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Nakano E, Williamson MP, Williams NH, Powers HJ (2004) Copper-mediated LDL oxidation by homocysteine and related compounds depends largely on copper ligation. Biochim Biophys Acta 1688(1):33–42. https://doi.org/10.1016/j.bbadis.2003.10.005

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Alissa EM, Bahijri SM, Lamb DJ, Ferns GA (2004) The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol 85(5):265–275. https://doi.org/10.1111/j.0959-9673.2004.00392.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rajendran R, Ren M, Ning P, Tan Kwong Huat B, Halliwell B, Watt F (2007) Promotion of atherogenesis by copper or iron--which is more likely? Biochem Biophys Res Commun 353(1):6–10. https://doi.org/10.1016/j.bbrc.2006.11.038

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Ehrenwald E, Fox PL (1996) Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J Clin Invest 97(3):884–890. https://doi.org/10.1172/jci118491

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hamilton IM, Gilmore WS, Strain JJ (2000) Marginal copper deficiency and atherosclerosis. Biol Trace Elem Res 78(1-3):179–189. https://doi.org/10.1385/bter:78:1-3:179

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Klevay LM, Inman L, Johnson LK, Lawler M, Mahalko JR, Milne DB, Lukaski HC, Bolonchuk W, Sandstead HH (1984) Increased cholesterol in plasma in a young man during experimental copper depletion. Metabolism 33(12):1112–1118. https://doi.org/10.1016/0026-0495(84)90096-9

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Allen KG, Klevay LM (1978) Cholesterolemia and cardiovascular abnormalities in rats caused by copper deficiency. Atherosclerosis 29(1):81–93. https://doi.org/10.1016/0021-9150(78)90096-5

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    DiSilvestro RA, Joseph EL, Zhang W, Raimo AE, Kim YM (2012) A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health. Metabolism 61(9):1242–1246. https://doi.org/10.1016/j.metabol.2012.02.002

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bo S, Durazzo M, Gambino R, Berutti C, Milanesio N, Caropreso A, Gentile L, Cassader M, Cavallo-Perin P, Pagano G (2008) Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr 138(2):305–310. https://doi.org/10.1093/jn/138.2.305

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20(4):470–475

    CAS  Article  Google Scholar 

  31. 31.

    Cheng ML, Kammerer CM, Lowe WF, Dyke B, VandeBerg JL (1988) Method for quantitating cholesterol in subfractions of serum lipoproteins separated by gradient gel electrophoresis. Biochem Genet 26(11-12):657–681. https://doi.org/10.1007/bf02395514

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Rutherford C, Martin W, Carrier M, Anggård EE, Ferns GA (1997) Endogenously elicited antibodies to platelet derived growth factor-BB and platelet cytosolic protein inhibit aortic lesion development in the cholesterol-fed rabbit. Int J Exp Pathol 78(1):21–32. https://doi.org/10.1046/j.1365-2613.1997.d01-237.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Brown WH, Pearce L, Van Allen CM (1925) Organ weights of normal rabbits. J Exp Med 42(1):69–82. https://doi.org/10.1084/jem.42.1.69

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68(3):231–240. https://doi.org/10.1016/0021-9150(87)90202-4

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Zhang C, Zheng H, Yu Q, Yang P, Li Y, Cheng F, Fan J, Liu E (2010) A practical method for quantifying atherosclerotic lesions in rabbits. J Comp Pathol 142(2-3):122–128. https://doi.org/10.1016/j.jcpa.2009.08.159

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11(4):447–455. https://doi.org/10.1007/bf01002772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Morrell A, Tallino S, Yu L, Burkhead JL (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69(4):263–270. https://doi.org/10.1002/iub.1613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mazur A, Gueux E, Bureau I, Feillet-Coudray C, Rock E, Rayssiguier Y (1998) Copper deficiency and lipoprotein oxidation. Atherosclerosis 137(2):443–445. https://doi.org/10.1016/s0021-9150(97)00301-8

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Allen KG, Klevay LM (1978) Copper deficiency and cholesterol metabolism in the rat. Atherosclerosis 31(3):259–271. https://doi.org/10.1016/0021-9150(78)90062-x

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Rayssiguier Y, Gueux E, Bussiere L, Mazur A (1993) Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J Nutr 123(8):1343–1348. https://doi.org/10.1093/jn/123.8.1343

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    al-Othman AA, Rosenstein F, Lei KY (1992) Copper deficiency alters plasma pool size, percent composition and concentration of lipoprotein components in rats. J Nutr 122(6):1199–1204. https://doi.org/10.1093/jn/122.6.1199

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Lei KY (1983) Alterations in plasma lipid, lipoprotein and apolipoprotein concentrations in copper-deficient rats. J Nutr 113(11):2178–2183. https://doi.org/10.1093/jn/113.11.2178

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Lei KY (1991) Dietary copper: cholesterol and lipoprotein metabolism. Annu Rev Nutr 11:265–283. https://doi.org/10.1146/annurev.nu.11.070191.001405

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA, McEwan AG, Sweet MJ (2013) Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep 33(4). https://doi.org/10.1042/bsr20130014

  45. 45.

    Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S (2010) Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 30(4):787–795. https://doi.org/10.1161/atvbaha.109.202051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Li K, Li C, Xiao Y, Wang T, James Kang Y (2018) The loss of copper is associated with the increase in copper metabolism MURR domain 1 in ischemic hearts of mice. Exp Biol Med (Maywood) 243(9):780–785. https://doi.org/10.1177/1535370218773055

    CAS  Article  Google Scholar 

  47. 47.

    Liu J, Chen C, Liu Y, Sun X, Ding X, Qiu L, Han P, James Kang Y (2018) Feature article: trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Exp Biol Med (Maywood) 243(14):1141–1152. https://doi.org/10.1177/1535370218813988

    CAS  Article  Google Scholar 

  48. 48.

    Bagheri B, Akbari N, Tabiban S, Habibi V, Mokhberi V (2015) Serum level of copper in patients with coronary artery disease. Niger Med J 56(1):39–42. https://doi.org/10.4103/0300-1652.149169

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Zhenghui Luo, Jingyao Zhang, and Qipu Feng for their technical assistance and Dr. Ying Xiao for statistically assistance

Funding

This work was supported by West China Hospital of Sichuan University.

Author information

Affiliations

Authors

Contributions

Hualin Li: Conceptualization, methodology, data curation, writing—original draft preparation. Lijun Zhao: Conceptualization and experimentation. Tao Wang: Conceptualization and writing—original draft. Y. James Kang: Conceptualization and writing—review and editing

Corresponding author

Correspondence to Y. James Kang.

Ethics declarations

Ethics Approval

The study was approved by the Institutional Animal Care and Use Committee at the Sichuan University West China Hospital, following the guidelines of the US National Institutes of Health. All participants provided the written informed consent.

Conflicts of Interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1
figure3

Schematic diagram of abdominal aorta sampling. The suprarenal abdominal artery (a) was shown in orange for evaluation of gross atherosclerotic lesion area by Oil Red O stain. The infrarenal abdominal artery segment was cut into several transverse segments. The first segment (b) (1-cm length) was shown in blue for the measurement of plaque copper concentration, the others were shown in yellow (c) (3-mm length per segment, about 6 ~ 8 transverse segments) for histological examination and cross-section quantification of atherosclerotic lesion area (PNG 1058 kb)

High resolution image (TIF 1900 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, L., Wang, T. et al. Dietary Cholesterol Supplements Disturb Copper Homeostasis in Multiple Organs in Rabbits: Aorta Copper Concentrations Negatively Correlate with the Severity of Atherosclerotic Lesions. Biol Trace Elem Res (2021). https://doi.org/10.1007/s12011-021-02618-0

Download citation

Keywords

  • Atherosclerosis
  • Copper
  • Cholesterol
  • Hypercholesterolemia
  • Rabbits