Skip to main content
Log in

Investigation of the Protective Role of Selenium in the Changes Caused by Chlorpyrifos in Trace Elements, Biochemical and Hematological Parameters in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Organophosphate compounds are the most widely employed insecticides in countries with high agriculture activity. On average, organophosphates cause 3 million people to poison and 200 000 deaths per year due to food chain or occupational, accidental, or suicidal exposure. Our study aimed to research selenium’s protective role against the toxic action of CPF, one of the most commonly used organophosphates, with an experimental model formed with rats. A total of 56 male SD rats were distributed into seven groups as follows: control (tap water), sham (corn oil), group I (5.4 mg/kg CPF), group II (13.5 mg/kg CPF), group III (3 mg/kg Se), group IV (5.4 mg/kg CPF+Se), and group V (13.5 mg/kg CPF+Se). Following 6 weeks of oral exposure, there were significant changes in AChE activity, biochemical and hematological parameters, and trace element levels in CPF-treated rats. In the high-dose CPF group, RBC values, Hb, and Hct decreased, and values of WBC, AST, ALT, ALP increased (p < 0.001) significantly compared to control, sham, and Se groups. While there was no significant change in zinc level, the copper and selenium levels were significantly higher in group IV than in control (p < 0.001) and sham (p < 0.05, p < 0.01, respectively) groups. Moreover, max. O.R.L. was found statistically more elevated in the high-dose CPF group compared to control, sham, and Se groups (p < 0.05, p < 0.05, and p < 0.01, respectively). All results indicated that Se is an antioxidant that reduces the toxic effects caused by CPF. Employing combinations of chlorpyrifos and selenium appeared greatly in restoring the harmful effects of CPF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang X, Xing H, Li X, Xu S, Wang X (2011) Effects of atrazine and chlorpyrifos on the mRNA levels of IL-1 and IFN-γ2b in immune organs of common carp. Fish Shellfish Immunol 31:126–133

    Article  CAS  PubMed  Google Scholar 

  2. Smida A, Ncibi S, Taleb J, Saad AB, Ncib S, Zourgui L (2017) Immunoprotective activity and antioxidant properties of cactus (Opuntia ficus indica) extract against chlorpyrifos toxicity in rats. Biomed Pharmacother 88:844–851

    Article  CAS  PubMed  Google Scholar 

  3. Lyu CP, Pei JR, Beseler LC, Li YL, Li JH, Ren M, Stallones L, Ren SP (2018) Case control study of impulsivity, aggression, pesticide exposure and suicide attempts using pesticides among farmers. Biomed Environ Sci 31:242–246

    PubMed  Google Scholar 

  4. Jaga K, Dharmani C (2007) The interrelation between organophosphate toxicity and the epidemiology of depression and suicide. Rev Environ Health 22:57–73

    Article  CAS  PubMed  Google Scholar 

  5. Goel A, Dani V, Dhawan DK (2005) Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chemico-Biological Interactions 156:131–140

    Article  CAS  PubMed  Google Scholar 

  6. Tripathi S, Srivastav AK (2010) Liver profile of rats after long-term ingestion of different doses of chlorpyrifos. Pesticide Biochemistry and Physiology 97(1):60–65

    Article  CAS  Google Scholar 

  7. Heikal TM, El-Sherbiny M, Hassan SA, Arafa AF, Ghanem H (2012) Antioxidant effect of selenium on hepatotoxicity induced by chlorpyrifos in male rats. Int J Pharm Pharm Sci 4(4):2012

    Google Scholar 

  8. Lamfon HA (2014) Effect of selenium on chlorpyrifos-induced thyroid toxicity in albino rats. Research in Endocrinology 2014:1–11

    Article  Google Scholar 

  9. Mattmiller SA, Carlson BA, Sordillo LM (2013) Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2(28):1–13

    Google Scholar 

  10. Fereidouni S, Kumar RR, Chadha VD, Dhawan DK (2019) Quercetin plays protective role in oxidative induced apoptotic events during chronic chlorpyrifos exposure to rats. J Biochem Mol Toxicol 33(8):e22341

    Article  PubMed  Google Scholar 

  11. Kalender Y, Kaya S, Durak D, Uzun FG, Demir F (2012) Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol 33(2):141–148

    Article  CAS  PubMed  Google Scholar 

  12. Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA (2019) Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 38(4):398–408

    Article  CAS  PubMed  Google Scholar 

  13. Ezzi L, Belhadj SI, Haouas Z, Sakly A, Grissa I, Chakroun S, Kerkeni E, Hassine M et al (2015) Histopathological and genotoxic effects of chlorpyrifos in rats. Environ Sci Pollut Res Int 23(5):4859–4867

    Article  PubMed  Google Scholar 

  14. Perez-Carreon JL, Dargent C, Merhi M, Fattel-Fazenda S, Arce-Popoca E, Villa-Treviño S, Rouimi P (2009) Tumor promoting and co-carcinogenic effects in medium-term rat hepatocarcinogenesis are not modified by co-administration of 12 pesticides in mixture at acceptable daily intake. Food Chem Toxicol 47(3):540–546

    Article  CAS  PubMed  Google Scholar 

  15. Suess J, Limentani D, Dameshek W, Dolloff MJ (1948) A quantitive method for the determination and charting of the erythrocytes hypotonic fragility. Blood 3:1290–1303

    Article  CAS  PubMed  Google Scholar 

  16. Oztürk B, Ozdemir S (2015) Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats. Toxicol Ind Health 31:1069–1077

    Article  PubMed  Google Scholar 

  17. Wang P, Wang J, Sun YJ, Yang L, Wu YJ (2017) Cadmium and chlorpyrifos inhibit cellular immune response in spleen of rats. Environ Toxicol 32(7):1–10

    Article  CAS  Google Scholar 

  18. Ambali SF, Ayo JO, Esievo KAN, Ojo SA (2011) Hemotoxicity induced by chronic chlorpyrifos exposure in Wistar rats: mitigating effect of vitamin C. Veterinary Medicine International 2011:1–7

    Article  Google Scholar 

  19. Goel A, Dani V, Dhawan DK (2007) Zinc mediates normalization of hepatic drug metabolizing enzymes in chlorpyrifos-induced toxicity. Toxicology Letters 169:26–33

    Article  CAS  PubMed  Google Scholar 

  20. Uzun FG, Kalender Y (2013) Chlorpyrifos induced hepatotoxic and hematologic changes in rats: the role of quercetin and catechin. Food and Chemic Toxicol 55:549–556

    Article  CAS  Google Scholar 

  21. Elsharkawy EE, Yahia D, El-Nisr NA (2013) Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: attenuation by glutathione. Environ Toxicol and Pharma 35:218–227

    Article  CAS  Google Scholar 

  22. Riedl J, Posch F, Königsbrügge O, Lötsch F, Reitter EM, Eigenbauer E, Marosi C, Schwarzinger I, Zielinski C, Pabinger I, Ay C (2014) Red cell distribution width and other red blood cell parameters in patients with cancer: association with risk of venous thromboembolism and mortality. PLoS One 9(10):e111440

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patil J, Patil AJ, Govindwar SP (2003) Biochemical effects of various pesticides on sprayers of grape gardens. Indian J Clin Biochem 18(2):16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Celik I, Suzek H (2008) The hematological effects of methyl parathion in rats. J Hazard Mater 153:1117–1121

    Article  CAS  PubMed  Google Scholar 

  25. Petterino C, Argentino-Storino A (2006) Clinical chemistry and haematology historical data in control Sprague-Dawley rats from pre-clinical toxicity studies. Exp. Toxicol. Pathol 57(3):213–219

    Article  CAS  PubMed  Google Scholar 

  26. Ncibi S, Othman MB, Akacha A, Krifi MN (2008) Zourgui L (2008) Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver. Food Chem Toxicol 46:797–802

    Article  CAS  PubMed  Google Scholar 

  27. Khan IA, Reddy BV, Mahboob M, Rahman MF, Jamil K (2001) Effect of phosphorothionate on the reproductive system of male rats. J Environ Sci Health 36:445–456

    Article  CAS  Google Scholar 

  28. Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA, Hodgson E (2001) Metabolism of chlorpyrifos by human cytochrome PCYP isoforms and human, mouse, and rat liver microsomes. Drug Metab Dispos 29:1201–1204

    CAS  PubMed  Google Scholar 

  29. Sharma S, Chadha P (2016) Induction of neurotoxicity by organophosphate pesticide chlorpyrifos and modulating role of cow urine. Springerplus 5(1):1344

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jortner BS (2008) Effect of stress at dosing on organophosphate and heavy metal toxicity. Toxicol and Appl Pharmacol 233:162–167

    Article  CAS  Google Scholar 

  31. Türkmen R, Özdemir M (2015) Klorprifos-Etil Uygulanan Diyabetli Ratlarda Likopenin Antioksidan ve Hipoglisemik Etkilerinin Araştırılması. Kocatepe Vet. J. 8(1):1–17

    Google Scholar 

  32. Chidiebere U, Ambali SF, Ayo JO, Esievo KAN (2017) The protective role of alpha-lipoic acid on long-term exposure of rats to the combination of chlorpyrifos and deltamethrin pesticides. Toxicol. and Indust. Health 33(2):159–170

    Article  Google Scholar 

  33. Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B (2009) Carbofuran-induced toxicity in rats: protective role of vitamin C. Exp Toxicol Pathol 61:531–535

    Article  CAS  PubMed  Google Scholar 

  34. Chidiebere U, Ambali SF, Ayo JO, Eseivo KAN (2011) Acetyl-L-carnitine attenuates haemotoxicity induced by subacute chlorpyrifos exposure in Wistar rats. Der Pharmacia Lettre 3(2):292–303

    CAS  Google Scholar 

  35. Zhu LZ, He, YP, Piao JH, Cai QY, Sun CP, Chang JZ, Wu K, Cong JP (1992) Difference of antioxidative effect between vitamin E and selenium. lipid-soluble antioxidants: biochemistry and clinical applications. Part of the series Molecular and Cell Biology Updates 92-104.

  36. Milošević MD, Paunovića MG, Matića MM, Ognjanovića BI, Saičićb ZS (2018) Role of selenium and vitamin C in mitigating oxidative stress induced by fenitrothion in rat liver. Biomedicine & Pharmacotherapy 106:232–238

    Article  Google Scholar 

  37. Rostan EF, DeBuys HV, Madey DL, Pinnell SR (2002) Evidence supporting zinc as an important antioxidant for skin. Int J of Dermatol 4:606–611

    Article  Google Scholar 

  38. Veskoukis AS, Tsatsakis AM, Kouretas D (2012) Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 17(1):11–21

    Article  CAS  PubMed  Google Scholar 

  39. Gutteridge JMC, Smith A (1988) Antioxidant protection by haemopexin of haemstimulated lipid peroxidation. Biochem J 256:861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jensen LS (1975) Modification of a selenium toxicity in chicks by dietary silver and copper. J Nutr 105(6):769–775

    Article  CAS  PubMed  Google Scholar 

  41. L’abbe MR, Fischer PWF, Chavez ER (1989) Changes in selenium and antioxidant status during DMBA induced mammary carcinogenesis in rats. J. Nutr. 119:766–771

    Article  PubMed  Google Scholar 

  42. Goel A, Dani V, Dhawan DK (2006) Role of zinc in mitigating the toxic effects of chlorpyrifos on hematological alterations and electron microscopic observations in rat blood. Springer 19(5):483–492

    CAS  Google Scholar 

  43. Guyton AC, Hall JE (2007) Ed: Cavusoğlu H, Yegen BC, Textbook of Medical Physiology, Istanbul.

Download references

Acknowledgements

The authors would like to thank Defne Guzey, a student at Istanbul University Cerrahpasa, for her contributions.

Funding

The present work was supported by the Istanbul University Scientific Research Projects Unit (Project No. TDK-2016-20474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Ozturk Kurt.

Ethics declarations

The Animal Experiments Local Ethics Committee approved the Istanbul University study (approval number was 2016/38).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk Kurt, B., Konukoglu, D., Kalayci, R. et al. Investigation of the Protective Role of Selenium in the Changes Caused by Chlorpyrifos in Trace Elements, Biochemical and Hematological Parameters in Rats. Biol Trace Elem Res 200, 228–237 (2022). https://doi.org/10.1007/s12011-021-02616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02616-2

Keywords

Navigation