Skip to main content
Log in

Effects of Supranutritional Selenium Nanoparticles on Immune and Antioxidant Capacity in Sprague-Dawley Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was conducted to investigate the effects of supranutritional selenium nanoparticles (SeNPs) on immune and antioxidant capacity in rats. Forty male Sprague-Dawley (SD) rats were randomly divided into four groups and given intragastric administration of SeNPs at doses of 0, 0.2, 0.4, and 0.8 mg Se/kg BW, respectively, for 2 weeks. Serum immune parameters, serum and organic tissues (liver, heart, kidney) antioxidant indices, and liver mRNA expression of glutathione peroxidase 1 (GPx1) and glutathione peroxidase 4 (GPx4) were examined. The results showed that supranutritional doses of 0.4 and 0.8 mg Se/kg BW SeNPs promoted the immune responses in serum. SeNPs administration improved antioxidant capacity in the liver and kidney, and the best improvement on antioxidant capacity was found in the kidney. Furthermore, intragastric administration of SeNPs upregulated mRNA expression of GPx1 and GPx4 in the liver. The results obtained indicated that SeNPs administration at supranutritional levels had beneficial effects on immune and antioxidant capacity and supplemental SeNPs at dose of 0.4 mg Se/kg BW exhibited the best response in SD rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kong YY, Li SQ, Ming F, Chuan W, Yang YX, Zhao NN, Li MZ (2019) Effect of dietary organic selenium on survival, growth, antioxidation, immunity and gene expressions of selenoproteins in abalone Haliotis discus hannai. Aquac Res 50:847–855

    Article  CAS  Google Scholar 

  2. Schomburg L (2011) Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat Rev Endocrinol 8(3):160–171

    Article  PubMed  CAS  Google Scholar 

  3. Bellinger F, Raman A, Reeves M, BERRY M (2009) Regulation and function of selenoproteins in human disease. Biochem J 422(1):11–22

    Article  CAS  PubMed  Google Scholar 

  4. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and selenocompounds. Biomed Pharmacother 57(3–4):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar N, Krishnani KK, Gupta SK, Sharma R, Baitha R, Singh DK, Singh NP (2018) Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. Fish Shellfish Immunol 78:289–298

    Article  CAS  PubMed  Google Scholar 

  6. Qiu WY, Wang YY, Wang M, Yan JK (2018) Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf B: Biointerfaces 70:692–700

    Article  CAS  Google Scholar 

  7. Liu L, He Y, Xiao Z, Tao W, Zhu J, Wang B, Liu Z, Wang M (2017) Effects of selenium nanoparticles on reproductive performance of male Sprague-Dawley rats at supranutritional and nonlethal levels. Biol Trace Elem Res 180:81–89

    Article  CAS  PubMed  Google Scholar 

  8. Xu C, Qiao L, Ma L, Yan S, Guo Y, Dou X, Zhang B, Roman A (2018) Biosynthesis of polysaccharides-capped selenium nanoparticles using Lactococcus lactis NZ9000 and their antioxidant and anti-inflammatory activities. Front Microbiol 9:1129–1140

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu C, Qiao L, Guo Y, Ma L, Cheng YY (2018) Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr Polym 195:576–585

    Article  CAS  PubMed  Google Scholar 

  10. Sadeghian S, Kojouri GA, Mohebbi A (2012) Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biol Trace Elem Res 146(3):302–308

    Article  CAS  PubMed  Google Scholar 

  11. Wu HL, Li XL, Liu W, Chen TF, Li YH, Zheng WJ, Man CW, Wong MK, Wong KH (2012) Surface decoration of selenium nanoparticles by mushroom poly- saccharides-protein complexes to achieve enhanced cellular uptake and anti-proliferative activity. J Mater Chem 22(19):9602–9610

    Article  CAS  Google Scholar 

  12. Mary TA, Shanthi K, Karuppaiya V, Soundarapandian K (2016) PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Adv 6(27):22936–22949

    Article  CAS  Google Scholar 

  13. Bai KK, Hong BH, He JL, Hong Z, Tan R (2017) Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine 12:4527–4539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO (2014) Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 65:155–162

    Article  CAS  PubMed  Google Scholar 

  15. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  16. Schwarz K, Foltz CM (1958) Factor 3 activity of selenium compounds. J Biol Chem 233:245–251

    Article  CAS  PubMed  Google Scholar 

  17. He Y, Chen S, Liu Z, Cheng C, Li H, Wang M (2014) Toxicity of selenium nanoparticles in male Sprague–Dawley rats at supranutritional and nonlethal levels. Life Sci 115(1-2):44–51

    Article  CAS  PubMed  Google Scholar 

  18. Kiełczykowska M, Kocot J, Paździor M, Musik I (2018) Selenium-a fascinating antioxidant of protective properties. Adv Clin Exp Med 27(2):245–255

    Article  PubMed  Google Scholar 

  19. Ip C, Ganther HE (1990) Activity of methylated forms of selenium in cancer prevention. Cancer Res 50(4):1206–1211

    CAS  PubMed  Google Scholar 

  20. Combs GJ (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr 135(2):343–357

    Article  CAS  PubMed  Google Scholar 

  21. Peng D, Zhang J, Liu Q, Ethan W (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101(10):1457–1463

    Article  CAS  PubMed  Google Scholar 

  22. Feng H, Du X, Liu J, Han X, Cao X, Zeng X (2014) Novel polysaccharide from Radix Cyathulae officinalis Kuan can improve immune response to ovalbumin in mice. Int J Biol Macromol 65(4):121–128

    Article  CAS  PubMed  Google Scholar 

  23. Ginzinger D (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30(6):503–512

    Article  CAS  PubMed  Google Scholar 

  24. Baowei W, Guoqing H, Qiaoli W, Bin Y (2011) Effects of yeast selenium supplementation on the growth performance, meat quality, immunity, and antioxidant capacity of goose. J Anim Physiol An N 95(4):440–448

    Article  CAS  Google Scholar 

  25. Cai SJ, Wu CX, Gong LM, Song T, Wu H (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91(10):2532–2539

    Article  CAS  PubMed  Google Scholar 

  26. Gong J, Ni L, Wang D, Shi BL, Yan SM (2014) Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest Sci 170:84–90

    Article  Google Scholar 

  27. Mahmoud E, Karen LW (2013) Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 42(12):5552–5576

    Article  CAS  Google Scholar 

  28. Haibo F, Fan J, Bo H, Tian X, Bao H (2016) Selenylation modification can enhance immune-enhancing activity of Chuanminshen violaceum polysaccharide. Carbohydr Polym 153:302–311

    Article  CAS  PubMed  Google Scholar 

  29. Won HY, Jung HS, Hyun JM, Lee KY, Hyun AW, Ye-Shih H, Jung WP, Sue-Goo R, Hwang ES (2010) Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development. Antioxid Redox Signal 13(5):575–587

    Article  CAS  PubMed  Google Scholar 

  30. Kim HP, Imbert J, Leonard WJ (2009) Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17(5):349–366

    Article  CAS  Google Scholar 

  31. Mohapatra P, Swain RK, Mishra SK, Behera T, Swain P, Mishra SS, Behura NC, Sabat SC, Sethy K, Dhama K, Jayasankar P (2014) Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int J Pharmacol 10(3):160–167

    Article  CAS  Google Scholar 

  32. Bunglavan SJ, Garg AK, Dass RS, Shrivastava S (2014) Effects of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats. Vet World 7(12):1075–1081

    Article  Google Scholar 

  33. Nicholson JWG, Bush RS, Allen JG (1993) Antibody response of growing beef cattle fed silage diet with and without selenium supplementation. Can J Anim Sci 73:355–365

    Article  Google Scholar 

  34. Gan F, Chen X, Liao SF, Lv C, Ren F, Ye G, Pan C, Huang D, Shi J, Shi X, Zhou H, Huang K (2014) Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J Agric Food Chem 62(20):4502–4508

    Article  CAS  PubMed  Google Scholar 

  35. Narayanankutty A, Job JT, Narayanankutty V (2019) Glutathione, an antioxidant tripeptide: dual roles in carcinogenesis and chemoprevention. Curr Protein Pept Sci 20(9):907–917

    Article  CAS  PubMed  Google Scholar 

  36. Cao J, Guo FC, Zhang LY, Dong B, Gong LM (2014) Effects of dietary selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. J Anim Sci Biotechnol 5(1):46–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fraternale A, Paoletti MF, Casabianca A, Nencioni L, Garaci E, Palamara AT, Magnani M (2009) GSH and analogs in antiviral therapy. Mol Asp Med 30(1-2):99–110

    Article  CAS  Google Scholar 

  38. Feng P, Wei J, Zhang Z (2011) Intervention of selenium on chronic fluorosis-induced injury of blood antioxidant capacity in rats. Biol Trace Elem Res 144(1-3):1024–1031

    Article  CAS  PubMed  Google Scholar 

  39. Lu Z, Wang P, Teng T, Shi B, Shan A, Lei XG (2019) Effects of dietary selenium deficiency or excess on selenoprotein gene expression in the spleen tissue of pigs. Animals (Basel) 9(12):1122–1130

    Article  Google Scholar 

  40. Diskin CJ, Tomasso CL, Alper JC, Glaser ML, Fliegel SE (1979) Long-term selenium exposure. Arch Intern Med 139(7):824–826

    Article  CAS  PubMed  Google Scholar 

  41. Sunde RA, Zemaitis ET 2nd, Blink AB, Lawinger JA (2018) Impact of glutathione peroxidase-1 (Gpx1) genotype on selenoenzyme and transcript expression when repleting selenium-deficient mice. Biol Trace Elem Res 186(1):174–184

    Article  CAS  PubMed  Google Scholar 

  42. Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12(7):793–795

    Article  CAS  PubMed  Google Scholar 

  43. Wang XN, Geng ZC, Wang Y, Liu SJ, Wu ZM (2010) Effects of sources and levels of dietary selenium on the expression level of mRNA of cellular glutathione peroxidase gene in piglets. Chin J Anim Nutr 22(6):1630–1635

    CAS  Google Scholar 

  44. Qin SY, Chen F, Guo YG, Huang BX, Zhang JB, Ma JF (2014) Effects of nano-selenium on kidney selenium contents, glutathione peroxidase activities and GPx-1 mRNA expression in mice. Adv Res Mater 1051:383–387

    Article  CAS  Google Scholar 

  45. Meng T, Liu YL, Xie CY, Zhang B, Huang YQ, Zhang YW, Yao Y, Huang R, Wu X (2019) Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol Trace Elem Res 189(2):548–555

    Article  CAS  PubMed  Google Scholar 

  46. Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2(2):138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gan L, Liu Q, Xu HB, Zhu HB, Yang YS, Yang XL (2002) Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol Trace Elem Res 89(2):165–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Three Agricultural and Six Party Research Cooperation Project of Zhejiang Province (CTZBF180706LWZ-SNY1) and the Science and Technology Research Project of Education Department of Jiangxi Province (171342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqi Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuyue Jin and Yudan He are co-first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., He, Y., Liu, L. et al. Effects of Supranutritional Selenium Nanoparticles on Immune and Antioxidant Capacity in Sprague-Dawley Rats. Biol Trace Elem Res 199, 4666–4674 (2021). https://doi.org/10.1007/s12011-021-02601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02601-9

Keywords

Navigation