Skip to main content

Leishmaniasis and Trace Element Alterations: a Systematic Review

Abstract

Leishmaniasis is a worldwide prevalent parasitic infection caused by different species of the genus Leishmania. Clinically, the disease divided into three main forms, including visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL). There is no vaccine for human leishmaniasis and their treatment is challenging. Trace elements (TEs) alteration, including the selenium (Se), zinc (Zn), copper (Cu), ron (Fe), and magnesium (Mg) have been detected in patients with CL and VL as well as canine leishmaniasis. Because TEs play a pivotal role in the immune system, and host immune responses have crucial roles in defense against leishmaniasis, this systematic review aimed to summarize data regarding TEs alteration in human and animal leishmaniasis as well as the role of these elements as an adjuvant for treatment of leishmaniasis. In a setting of systematic review, we found 29 eligible articles (any date until October 1, 2020) regarding TEs in human CL (N = 12), human VL (N = 4), canine leishmaniasis (N = 3), and treatment of leishmaniasis based on TEs (N = 11), which one study examined the TEs level both in CL and VL patients. Our analysis demonstrated a significantly decreased level of Fe, Zn, and Se among human CL and canine leishmaniasis, and Zn and Fe in patients with VL. In contrast, an increased level of Cu in CL patients and Cu and Mg in VL patients and canine leishmaniasis was observed. Treatment of CL based zinc supplementation revealed enhancement of wound healing and diminished scar formation in human and experimentally infected animals. The results of this systematic review indicate that the TEs have important roles in leishmaniasis, which could be assessed as a prognosis factor in this disease. It is suggested that TEs could be prescribed as an adjuvant for the treatment of CL and VL patients.

This is a preview of subscription content, access via your institution.

Fig. 1

Data Availability

Not applicable.

Abbreviations

VL:

visceral leishmaniasis

CL:

cutaneous leishmaniasis

MCL:

mucocutaneous leishmaniasis

TEs:

trace elements

Se:

selenium

Zn:

zinc

Cu:

copper

Fe:

iron

SOD:

superoxide dismutase

GSH-Px:

glutathione peroxidase

Gpx:

glutathione peroxidase enzyme

Cp:

ceruloplasmin

Htc:

hematocrit

CAT:

catalase

Th1:

T helper 1

Th2:

T helper 2

IFNγ:

interferon gamma

TNF:

tumor necrosis factor

TGF-β:

transforming growth factor beta

References

  1. Gramiccia M, Gradoni L (2005) The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol 35(11-12):1169–1180

    PubMed  Article  Google Scholar 

  2. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet. 366(9496):1561–1577

    CAS  PubMed  Article  Google Scholar 

  3. Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37(10):1097–1106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Goto H, Lindoso JAL (2012) Cutaneous and mucocutaneous leishmaniasis. Infect Dis Clin 26(2):293–307

    Article  Google Scholar 

  5. Ready PD (2014) Epidemiology of visceral leishmaniasis. Clin Epidemiol 6:147

    PubMed  PubMed Central  Article  Google Scholar 

  6. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J (2016) Regulation of immunity during visceral Leishmania infection. Parasit Vectors 9(1):118

    PubMed  PubMed Central  Article  Google Scholar 

  7. Muller I, Pedrazzini T, Farrell JP, Louis J (1989) T-cell responses and immunity to experimental infection with Leishmania major. Annu Rev Immunol 7(1):561–578

    CAS  PubMed  Article  Google Scholar 

  8. Maspi N, Abdoli A, Ghaffarifar F (2016) Pro-and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health 110(6):247–260

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Abdoli A, Maspi N, Ghaffarifar F (2017) Wound healing in cutaneous leishmaniasis: a double edged sword of IL-10 and TGF-β. Comp Immunol Microbiol Infect Dis 51:15–26. https://doi.org/10.1016/j.cimid.2017.02.001

    PubMed  Article  Google Scholar 

  10. O’Neal SE, Guimaraes LH, Machado PR, Alcântara L, Morgan DJ, Passos S et al (2007) Influence of helminth infections on the clinical course of and immune response to Leishmania braziliensis cutaneous leishmaniasis. J Infect Dis 195(1):142–148

    PubMed  Article  Google Scholar 

  11. Sarkar A, Saha P, Mandal G, Mukhopadhyay D, Roy S, Singh SK, Das S, Goswami RP, Saha B, Kumar D, Das P, Chatterjee M (2011) Monitoring of intracellular nitric oxide in leishmaniasis: its applicability in patients with visceral leishmaniasis. Cytometry A 79(1):35–45

    PubMed  Article  Google Scholar 

  12. Kaye PM, Svensson M, Ato M, Maroof A, Polley R, Stager S, Zubairi S, Engwerda CR (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201(1):239–253. https://doi.org/10.1111/j.0105-2896.2004.00188.x

    CAS  PubMed  Article  Google Scholar 

  13. Kima P, Soong L (2013) Interferon gamma in leishmaniasis. Front Immunol 4(156). https://doi.org/10.3389/fimmu.2013.00156

  14. Blackwell JM, Fakiola M, Castellucci LC (2020) Human genetics of leishmania infections. Hum Genet 139(6):813–819. https://doi.org/10.1007/s00439-020-02130-w

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Pinheiro RO, Rossi-Bergmann B (2007) Interferon-gamma is required for the late but not early control of Leishmania amazonensis infection in C57Bl/6 mice. Mem Inst Oswaldo Cruz 102(1):79–82

    CAS  PubMed  Article  Google Scholar 

  16. Kolde G, Luger T, Sorg C, Sunderkötter CS (1996) Successful treatment of cutaneous leishmaniasis using systemic interferon-gamma. Dermatology. 192(1):56–60. https://doi.org/10.1159/000246316

    CAS  PubMed  Article  Google Scholar 

  17. Badaro R, Falcoff E, Badaro FS, Carvalho EM, Pedral-Sampaio D, Barral A, Carvalho JS, Barral-Netto M, Brandely M, Silva L, Bina JC, Teixeira R, Falcoff R, Rocha H, Ho JL, Johnson WD Jr (1990) Treatment of visceral leishmaniasis with pentavalent antimony and interferon gamma. N Engl J Med 322(1):16–21. https://doi.org/10.1056/nejm199001043220104

    CAS  PubMed  Article  Google Scholar 

  18. Sharma U, Singh S (2009) Immunobiology of leishmaniasis. Indian J Exp Biol 47(6):412–423

    CAS  PubMed  Google Scholar 

  19. Wilhelm P, Ritter U, Labbow S, Donhauser N, Rollinghoff M, Bogdan C et al (2001) Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J Immunol 166(6):4012–4019

    CAS  PubMed  Article  Google Scholar 

  20. Garcia I, Miyazaki Y, Araki K, Araki M, Lucas R, Grau GE, Milon G, Belkaid Y, Montixi C, Lesslauer W, Vassalli P (1995) Transgenic mice expressing high levels of soluble TNF-R1 fusion protein are protected from lethal septic shock and cerebral malaria, and are highly sensitive to Listeria monocytogenes and Leishmania major infections. Eur J Immunol 25(8):2401–2407. https://doi.org/10.1002/eji.1830250841

    CAS  PubMed  Article  Google Scholar 

  21. Scott P, Novais FO (2016) Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16(9):581–592. https://doi.org/10.1038/nri.2016.72

    CAS  PubMed  Article  Google Scholar 

  22. Underwood EJ (1977) Trace elements in human and animal nutrition. 1977 No.Ed. 4. Academic Press, Inc., London, UK

  23. Kodama H (1996) Essential trace elements and immunity. Nihon Rinsho 54(1):46–51

    CAS  PubMed  Google Scholar 

  24. Chandra RK, Dayton DH (1982) Trace element regulation of immunity and infection. Nutr Res 2(6):721–733

    CAS  Article  Google Scholar 

  25. Amini M, Nahrevanian H, Khatami S, Farahmand M, Mirkhani F, Javadian S (2009) Biochemical association between essential trace elements and susceptibility to Leishmania major in BALB/c and C57BL/6 mice. Braz J Infect Dis 13(2):83–85

    PubMed  Article  Google Scholar 

  26. Faryadi M, Mohebali M (2003) Alterations of serum zinc, copper and iron concentrations in patients with acute and chronic cutaneous leishmaniasis. Iran J Public Health 32(4):53–58

    CAS  Google Scholar 

  27. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    PubMed  PubMed Central  Article  Google Scholar 

  28. Farzin L, Moassesi ME, Sajadi F (2014) Alterations of serum antioxidant trace elements (Se, Zn and Cu) status in patients with cutaneous leishmaniasis. Asian Pac J Trop Dis 4:S445–S4S8

  29. Pourfallah F, Javadian S, Zamani Z, Saghiri R, Sadeghi S, Zarea B, Faiaz Sh, Mirkhani F, Fatemi N (2009) Evaluation of serum levels of zinc, copper, iron, and zinc/copper ratio in cutaneous leishmaniasis. Iran J Arthropod Borne Dis 3(2):7–11

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Farzin L, Moassesi ME (2014) A comparison of serum selenium, zinc and copper level in visceral and cutaneous leishmaniasis. J Res Med Sci 19(4):355–357

    PubMed  PubMed Central  Google Scholar 

  31. Kahvaz MS, Soltani S, Soltani S, Carvalheiro MC, Foroutan M (2020) Low serum levels of selenium, zinc, iron, and zinc/copper ratio in an endemic region of cutaneous leishmaniasis in southwest Iran. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02271-z

  32. Koçyiğit A, Erel O, Gürel M, Avcı S, Aktepe N (1998) Serum selenium, zinc, copper and iron concentrations and some related antioxidant enzymes in patients with cutaneous leishmaniasis. Marmara Med J 11(2):77–82

  33. Kocyigit A, Erel O, Seyrek A, Gurel M, Aktepe N, Avci S, Vural H (1998) Effects of antimonial therapy on serum zinc, copper and iron concentrations in patients with cutaneous Leishmaniasis in Turkey. J Egypt Soc Parasitol 28(1):133–142

    CAS  PubMed  Google Scholar 

  34. Kocyigit A, Gur S, Erel O, Gurel MS (2002) Associations among plasma selenium, zinc, copper, and iron concentrations and immunoregulatory cytokine levels in patients with cutaneous leishmaniasis. Biol Trace Elem Res 90(1-3):47–55

    CAS  PubMed  Article  Google Scholar 

  35. Koçyiğit A, Erel Ö, Gürel MS, Seyrek A, Aktepe N, Gür S et al (1999) Decreasing selenium levels and glutathione peroxidase activity in patients with cutaneous leishmaniasis. Turk J Med Sci 29(3):291–296

  36. Van Weyenbergh J, Santana G, D'Oliveira A, Santos AF, Costa CH, Carvalho EM et al (2004) Zinc/copper imbalance reflects immune dysfunction in human leishmaniasis: an ex vivo and in vitro study. BMC Infect Dis 4(1):50

    PubMed  PubMed Central  Article  Google Scholar 

  37. Al-Hassani MKK, Al-Mayali HMH (2020) Evaluation of some biochemical levels in patients with Cutaneous leishmaniasis serum and their relationship with antioxidant enzymes. EurAsian J Biosci 14(1):1999–2006

  38. Najafzade M, Mosapour A, Nahrevanian H, Zamani Z, Javadian S, Mirkhani F (2015) Effect of trinitroglycerin therapy on serum zinc and copper levels and liver enzyme activities in BALB/c mice infected with Leishmania major MRHO/IR/75/ER. Iran J Basic Med Sci 18(3):77–283

    Google Scholar 

  39. Mishra J, Carpenter S, Singh S (2010) Low serum zinc levels in an endemic area of visceral leishmaniasis in Bihar, India. Indian J Med Res 131(6):793–798

    CAS  PubMed  Google Scholar 

  40. Lal CS, Kumar S, Ranjan A, Rabidas VN, Verma N, Pandey K, Verma RB, Das S, Singh D, Das P (2013) Comparative analysis of serum zinc, copper, magnesium, calcium and iron level in acute and chronic patients of visceral leishmaniasis. J Trace Elem Med Biol 27(2):98–102

    CAS  PubMed  Article  Google Scholar 

  41. Souza CC, de O Barreto T, da Silva SM, Pinto AW, Figueiredo MM, Ferreira Rocha OG et al (2014) A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis. Int J Exp Pathol 95(4):260–270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Heidarpour M, Soltani S, Mohri M, Khoshnegah J (2012) Canine visceral leishmaniasis: relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status. Parasitol Res 111(4):1491–1496

    CAS  PubMed  Article  Google Scholar 

  43. Pasa S, Kargin F, Bildik A, Seyrek K, Ozbel Y, Ozensoy S (2003) Serum and hair levels of zinc and other elements in dogs with visceral leishmaniasis. Biol Trace Elem Res 94(2):141–147. https://doi.org/10.1385/BTER:94:2:141

    CAS  PubMed  Article  Google Scholar 

  44. Sharquie K, Najim R, Farjou I, Al-Timimi D (2001) Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis. Clin Exp Dermatol 26(1):21–26

    CAS  PubMed  Article  Google Scholar 

  45. Sharquie K, Najim R, Farjou I (1997) A comparative controlled trial of intralesionally-administered zinc sulphate, hypertonic sodium chloride and pentavalent antimony compound against acute cutaneous leishmaniasis. Clin Exp Dermatol 22(4):169–173

    CAS  PubMed  Article  Google Scholar 

  46. Sharquie KE, Noaimi AA, Sharara ZA, Saleh BA, Al-Salam WS (2017) Topical therapy of acute cutaneous leishmaniasis using zinc sulphate solution 25% versus podophyllin solution 25%. J Chem Dermatol Sci Appl 7(03):258–274

  47. Sharquie KE, Noaimi AA, Al-Salam WS (2016) Treatment of acute cutaneous Leishmaniasis by oral zinc sulfate and oral ketocanazole singly and in combination. J Chem Dermatol Sci Appl 6(03):105

  48. Carbone DCB, Zanoni LZG, Cônsolo FZ, Sanches SC, Quadros dos Reis V, de Toledo Candido Muller K et al (2018) Potential role of zinc in the visceromegaly regression and recovery of hematological parameters during treatment of visceral leishmaniasis in children from an endemic area. Rev Inst Med Trop Sao Paulo 60:1–7

    Article  Google Scholar 

  49. Farajzadeh S, Ahmadi R, Mohammadi S, Pardakhty A, Khalili M, Aflatoonian M (2018) Evaluation of the efficacy of intralesional Glucantime plus niosomal zinc sulphate in comparison with intralesional Glucantime plus cryotherapy in the treatment of acute cutaneous leishmaniasis, a randomized clinical trial. J Parasit Dis 42(4):616–620. https://doi.org/10.1007/s12639-018-1044-5

    PubMed  PubMed Central  Article  Google Scholar 

  50. Firooz A, Khatami A, Khamesipour A, Nassiri-Kashani M, Behnia F, Nilforoushzadeh M et al (2005) Intralesional injection of 2% zinc sulfate solution in the treatment of acute old world cutaneous leishmaniasis: a randomized, double-blind, controlled clinical trial. J Drugs Dermatol 4(1):73–79

    PubMed  Google Scholar 

  51. Maleki M, Karimi G, Tafaghodi M, Raftari S, Nahidi Y (2012) Comparison of intralesional two percent zinc sulfate and glucantime injection in treatment of acute cutaneous leishmaniasis. Indian J Dermatol 57(2):118–122

    PubMed  PubMed Central  Article  Google Scholar 

  52. Sorkhroodi FZ, Naeini AA, Ramazani AZ, Ghazvini MA, Mohebali M, Keshavarz S (2010) Therapeutic effect of sodium selenite and zinc sulphate as supplementary with meglumine antimoniate (glucantime®) against cutaneous leishmaniasis in BALB/c mice. Iran J Parasitol 5(3):11–19

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Afshari M, Riazi-Rad F, Khaze V, Bahrami F, Ajdary S, Alimohammadian MH (2016) Oral treatment with zinc sulfate increases the expression of Th1 cytokines mRNA in BALB/c mice infected with Leishmania major. Cytokine. 81:71–76. https://doi.org/10.1016/j.cyto.2016.02.002

    CAS  PubMed  Article  Google Scholar 

  54. Najim RA, Sharquie KE, Farjou IB (1998) Zinc sulphate in the treatment of cutaneous leishmaniasis: an in vitro and animal study. Mem Inst Oswaldo Cruz 93(6):831–837

    CAS  PubMed  Article  Google Scholar 

  55. Antinori S, Schifanella L, Corbellino M (2012) Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis 31(2):109–118. https://doi.org/10.1007/s10096-011-1276-0

    CAS  PubMed  Article  Google Scholar 

  56. Nweze JA, Nweze EI, Onoja US (2020) Nutrition, malnutrition, and leishmaniasis. Nutrition. 73:110712. https://doi.org/10.1016/j.nut.2019.110712

    CAS  PubMed  Article  Google Scholar 

  57. Failla ML (2003) Trace elements and host defense: recent advances and continuing challenges. J Nutr 133(5):1443S–1447S. https://doi.org/10.1093/jn/133.5.1443S

    CAS  PubMed  Article  Google Scholar 

  58. Dryden M (2018) Reactive oxygen species: a novel antimicrobial. Int J Antimicrob Agents 51(3):299–303. https://doi.org/10.1016/j.ijantimicag.2017.08.029

    CAS  PubMed  Article  Google Scholar 

  59. (1981) Severe zinc deficiency in humans: association with a reversible T-lymphocyte dysfunction. Ann Intern Med 95(2):154–157. https://doi.org/10.7326/0003-4819-95-2-154

  60. Beck F, Prasad A, Kaplan J, Fitzgerald J, Brewer G (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol Endocrinol Metab 272(6):E1002–E10E7

    CAS  Article  Google Scholar 

  61. Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4(7):676–694. https://doi.org/10.3390/nu4070676

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Bao B, Prasad AS, Beck FWJ, Godmere M (2003) Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab 285(5):E1095–EE102. https://doi.org/10.1152/ajpendo.00545.2002

    CAS  PubMed  Article  Google Scholar 

  63. Prasad AS, Beck FW, Bao B, Fitzgerald JT, Snell DC, Steinberg JD et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85(3):837–844. https://doi.org/10.1093/ajcn/85.3.837

    CAS  PubMed  Article  Google Scholar 

  64. Lin P-H, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J (2018) Zinc in wound healing modulation. Nutrients 10(1):16. https://doi.org/10.3390/nu10010016

    CAS  Article  Google Scholar 

  65. Kogan S, Sood A, Garnick MS (2017) Zinc and wound healing: a review of zinc physiology and clinical applications. Wounds 29(4):102–106

    PubMed  Google Scholar 

  66. Cassat James E, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519. https://doi.org/10.1016/j.chom.2013.04.010

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Nairz M, Weiss G (2020) Iron in infection and immunity. Mol Asp Med 75:100864. https://doi.org/10.1016/j.mam.2020.100864

    CAS  Article  Google Scholar 

  68. Ganz T (2018) Iron and infection. Int J Hematol 107(1):7–15. https://doi.org/10.1007/s12185-017-2366-2

    CAS  PubMed  Article  Google Scholar 

  69. Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM (2020) Iron and heme metabolism at the leishmania–host interface. Trends Parasitol 36(3):279–289. https://doi.org/10.1016/j.pt.2019.12.010

    PubMed  PubMed Central  Article  Google Scholar 

  70. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    CAS  PubMed  Article  Google Scholar 

  71. Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V, Shakibaie M, Tat M (2014) Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol 23(1):15–20. https://doi.org/10.1007/s00580-012-1561-z

    CAS  Article  Google Scholar 

  72. Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, Shahverdi AR (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27(3):203–207. https://doi.org/10.1016/j.jtemb.2012.11.002

    CAS  PubMed  Article  Google Scholar 

  73. Mostafavi M, Farajzadeh S, Sharifi I, Khazaeli P, Sharifi H (2019) Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J Parasit Dis 43(2):176–185. https://doi.org/10.1007/s12639-018-1071-2

    PubMed  PubMed Central  Article  Google Scholar 

  74. Mostafavi M, Khazaeli P, Sharifi I, Farajzadeh S, Sharifi H, Keyhani A, Parizi MH, Kakooei S (2019) A novel niosomal combination of selenium coupled with glucantime against Leishmania tropica. Korean J Parasitol 57(1):1–8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Percival SS (1998) Copper and immunity. Am J Clin Nutr 67(5):1064S–1068S. https://doi.org/10.1093/ajcn/67.5.1064S

    CAS  PubMed  Article  Google Scholar 

  76. Kubenam KS (1994) The role of magnesium in immunity. J Nutr Immunol 2(3):107–126. https://doi.org/10.1300/J053v02n03_07

    Article  Google Scholar 

  77. Whitehouse MW, Walker WR (1978) Copper and inflammation. Agents Actions 8(1):85–90. https://doi.org/10.1007/BF01972407

    CAS  PubMed  Article  Google Scholar 

  78. Lv J, Xiao Q, Chen Y, Fan X, Liu X, Liu F, Luo G, Zhang B, Wang S (2017) Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with allo-HSCT. Int Immunopharmacol 46:56–61. https://doi.org/10.1016/j.intimp.2017.02.022

    CAS  PubMed  Article  Google Scholar 

  79. Han F, Xu L, Huang Y, Chen T, Zhou T, Yang L (2018) Magnesium sulphate can alleviate oxidative stress and reduce inflammatory cytokines in rat placenta of intrahepatic cholestasis of pregnancy model. Arch Gynecol Obstet 298(3):631–638. https://doi.org/10.1007/s00404-018-4850-1

    CAS  PubMed  Article  Google Scholar 

  80. Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34. https://doi.org/10.2147/JIR.S136742

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

Amir Abdoli is supported by National Institute for Medical Research Development (NIMAD) grant number: 978507. This study is financially purported by Jahrom University of Medical Sciences, Jahrom, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abdoli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taghipour, A., Abdoli, A., Ramezani, A. et al. Leishmaniasis and Trace Element Alterations: a Systematic Review. Biol Trace Elem Res 199, 3918–3938 (2021). https://doi.org/10.1007/s12011-020-02505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02505-0

Keywords

  • Leishmaniasis
  • Trace elements
  • Zinc
  • Iron
  • Selenium
  • Copper
  • Magnesium