Skip to main content

A Systematic Review of the Zinc Content of the Normal Human Prostate Gland

Abstract

The prostate gland is subject to various disorders. The etiology and pathogenesis of these diseases are not well understood. Moreover, despite technological advancements, the differential diagnosis of prostate disorders has become progressively more complex and controversial. It was suggested that the Zn level in prostatic tissue plays an important role in prostatic carcinogenesis and its measurement may be useful as a cancer biomarker. These suggestions promoted more detailed studies of the Zn content in the prostatic tissue of healthy subjects. The present study evaluated by systematic analysis presents the published data for Zn content analyzed in prostatic tissue of “normal” glands. This evaluation reviewed 1885 studies, all of which were published in the years from 1921 to 2020 and were located by searching the databases PubMed, MEDLINE, Scopus, Web of Science, Elsevier-Embase, and Cochrane Library. In addition, the personal archive of the author collected from 1966 to 2020 was also used. The articles were analyzed and “median of means” and “range of means” were used to examine heterogeneity of the measured Zn content in prostates of apparently healthy men. The objective analysis was performed on data from the 105 studies, which included 3735 subjects. It was found that the range of means of prostatic Zn content reported in the literature for “normal” gland varies widely from 17 to 547 mg/kg with median of means 109 mg/kg on a wet mass basis. The Zn content depends on many factors such as analytical method, age, level of androgens, dietary Zn intake, and the prostatic region and fraction of prostate tissue being studied. Finally, because of small sample size and high data heterogeneity, we recommend other primary studies be performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Nickel JC (2011) Prostatitis. Can Urol Assoc J 5:306–315

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lim KB (2017) Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol 4:148–151

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  4. Sharma S, Zapatero-Rodríguez J, O'Kennedy R (2017) Prostate cancer diagnostics: clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnol Adv 35:135–149

    Article  PubMed  Google Scholar 

  5. Avisyn AP, Dunchik VN, Zhavoronkov AA, Zaichick VE, Sviridova TV (1981) Histological structure of the prostate and content of zinc in it during various age period. Archiv Anatomy Gistology Ebriology (Leningrad) 81(11):76–83

    Google Scholar 

  6. Zaichick V (2004) INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem 262:229–234

    Article  CAS  Google Scholar 

  7. Zaichick V, Zaichick S (2013) The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot 82:145–151

    Article  CAS  PubMed  Google Scholar 

  8. Zaichick V, Zaichick S (2013) INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem 298:1559–1566

    Article  CAS  Google Scholar 

  9. Zaichick V, Zaichick S (2013) NAA-SLR and ICP-AES application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res 156:357–366

    Article  CAS  PubMed  Google Scholar 

  10. Zaichick V, Zaichick S (2013) Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Anal Chem 4:696–706

    Article  CAS  Google Scholar 

  11. Zaichick V, Zaichick S (2014) Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res 157:195–204

    Article  CAS  PubMed  Google Scholar 

  12. Zaichick V, Zaichick S (2014) Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Adv Biomed Sci Eng 1:26–42

    Google Scholar 

  13. Zaichick V, Zaichick S (2014) Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. BioMetals 27:333–348

    Article  CAS  PubMed  Google Scholar 

  14. Zaichick V, Zaichick S (2014) The distribution of 54 trace elements including zinc in pediatric and nonhyperplastic young adult prostate gland tissues. J Clin Lab Invest Updates 2(1):1–15

    Article  CAS  Google Scholar 

  15. Zaichick V, Zaichick S (2014) Androgen-dependent chemical elements of prostate gland. Androl Gynecol: Curr Res 2:2

    Article  Google Scholar 

  16. Zaichick V, Zaichick S (2015) Differences and relationships between morphometric parameters and zinc content in nonhyperplastic and hyperplastic prostate glands. Br J Med Med Res 8:692–706

    Article  Google Scholar 

  17. Zaichick V., Zaichick S (1999) Role of zinc in prostate cancerogenesis. In: Mengen und Spurenelemente. 19. Arbeitstagung. Friedrich-Schiller-Universitat, Jena, pp 104–115

  18. Zaichick V, Zaichick S, Wynchank S (2016) Intracellular zinc excess as one of the main factors in the etiology of prostate cancer. J Anal Oncol 5:124–131

    Article  CAS  Google Scholar 

  19. Zaichick V, Zaichick S, Rossmann M (2016) Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Mol Sci 3:635–647

    Article  CAS  Google Scholar 

  20. Dunchik V, Zherbin E, Zaichick V, Leonov A, Sviridova T (1980) Method for differential diagnostics of prostate malignant and benign tumours. Russian patent (Author’s Certificate No 764660, priority of invention 27.10.1977). Discoveries, Inventions, Commercial Models, Trade Marks 35:13

  21. Zaichick V, Sviridova T, Zaichick S (1997) Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol 29:565–574

    Article  PubMed  Google Scholar 

  22. Zaichick V, Zaichick S (2017) Trace element levels in prostate gland as carcinoma’s markers. J Cancer Ther 8:131–145

    Article  CAS  Google Scholar 

  23. Zaichick V, Zaichick S (2016) Ratios of selected chemical element contents in prostatic tissue as markers of malignancy. Hematol Med Oncol 1(2):1–8

    Article  Google Scholar 

  24. Zaichick V, Zaichick S (2017) Ratios of Zn/trace element contents in prostate gland as carcinoma’s markers. Cancer Rep Rev 1(1):1–7

    Article  Google Scholar 

  25. Zaichick V, Zaichick S (2017) Ratios of selenium/trace element contents in prostate gland as carcinoma’s markers. J Tumor Med Prev 1(2):555556

    Article  Google Scholar 

  26. Zaichick V, Zaichick S (2017) Ratios of rubidium/trace element contents in prostate gland as carcinoma’s markers. Can Res Clin Oncol 1:13–21

    Google Scholar 

  27. Zaichick V, Zaichick S (2017) Ratios of cadmium/trace element contents in prostate gland as carcinoma’s markers. Canc Therapy Oncol Int J 4(1):555626

    Google Scholar 

  28. Zaichick V, Zaichick S (2017) Ratios of cobalt/trace element contents in prostate gland as carcinoma’s markers. Int J Cancer Epid Res 1:21–27

    Google Scholar 

  29. Zaichick V, Zaichick S (2017) Ratios of calcium/trace elements as prostate cancer markers. J Oncol Res Ther 4:J116

    Google Scholar 

  30. Zaichick V, Zaichick S (2017) Ratios of mg/trace element contents in prostate gland as carcinoma’s markers. SAJ Canc Sci 2(1):102

    Google Scholar 

  31. Bertrand G, Vladesco R (1921) Intervention probable du zinc dans les phenomenes de fecundation chez les animaux vertebres. Compt Rend Acad Sci (Paris) 173:176–180

    CAS  Google Scholar 

  32. Mawson CA, Fischer MJ (1952) The occurrence of zinc in the human prostate gland. Can J Med Sci 30:336–339

    CAS  PubMed  Google Scholar 

  33. Hoare R, Delory GE, Penner DW (1956) Zinc and acid phosphatase in the human prostate. Cancer 9:721–726

    Article  CAS  PubMed  Google Scholar 

  34. Györkey F, Min K-W, Huff JA, Györkey P (1967) Zinc and magnesium in human prostate gland: normal, hyperplastic, and neoplastic. Cancer Res 27(8 Pt 1):1349–1353

    Google Scholar 

  35. Schrauzer GN (2008) Antioxidant supplementation increases skin cancer risk, or, why zinc should not be considered an antioxidant. J Nutr 13:821–822

    Google Scholar 

  36. Grigorescu R, Gruia MI, V. Nacea V, Nitu C (2015) Parameters of oxidative stress variation depending on the concentration of inorganic zinc compounds. J Med Life 8:449–451

  37. Hennigar SR, Kelley AM, McClung JP (2016) Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review. Adv Nutr 7:735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaichick V (2006) Medical elementology as a new scientific discipline. J Radioanal Nucl Chem 269:303–309

    Article  CAS  Google Scholar 

  39. Schwartz MK (1975) Role of trace elements in cancer. Cancer Res 35:3481–3487

    CAS  PubMed  Google Scholar 

  40. Cui Y, Vogt S, Olson N, Glass AG, Rohan TE (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomark Prev 16:1682–1685

    Article  CAS  Google Scholar 

  41. Zaichick V, Sviridova T, Zaichick S (1997) Zinc in human prostate gland: normal, hyperplastic and cancerous. J Radioanal Nucl Chem 217:157–161

    Article  CAS  Google Scholar 

  42. Zaichick S, Zaichick V (2012) Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. J Appl Radiat Isot 70:81–87

    Article  CAS  Google Scholar 

  43. Zaichick V (2017) Differences between 66 chemical element contents in normal and cancerous prostate. J Anal Oncol 6:37–56

    Article  CAS  Google Scholar 

  44. Vartsky D, Shilstein S, Bercovich A, Huszar M, Breskin A, Chechik R, Korotinsky S, Malnick SD, Moriel E (2003) Prostatic zinc and prostate specific antigen: an experimental evaluation of their combined diagnostic value. J Urol 170(6 Pt 1):2258–2262

    Article  CAS  PubMed  Google Scholar 

  45. Shilstein SS, Cortesi M, Breskin A, Chechik R, Vartsky D, Ravivd G, Kleinman N, Ramond J, Koganf G, Gladysh V, Moriel E, Huszar M, Volkov A, Fridman E (2006) Prostatic Zn determination for prostate cancer diagnosis. Talanta 70:914–921

    Article  CAS  PubMed  Google Scholar 

  46. Cortesi M, Fridman E, Volkov A, Shilstein SS, Chechik R, Breskin A, Vartsky D, Kleinman N, Kogan G, Moriel E, Gladysh V, Huszar M, Ramon J, Raviv G (2008) Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate 68:994–1006

    Article  CAS  PubMed  Google Scholar 

  47. Cortesi M, Fridman E, Volkov A, Shilstein S, Chechik R, Breskin A, Vartsky D, Raviv G, Ramon J (2010) New prospective for non-invasive detection, grading, size evaluation, and tumor location of prostate cancer. Prostate 70:1701–1708

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh SK, Kim P, Zhang X, Yun S-H, Moore A, Lippard SJ, Medarova Z (2010) A novel imaging approach for early detection of prostate cancer based on endogenous zinc sensing. Cancer Res 70:6119–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tipton JH, Steiner RL, Foland WD, Mueller J, Stanley M (1954) USAEC-ORNL-report-CF-54-12-66

  50. Koch HJ, Smith ER, Shimp NF, Connor J (1956) Analysis of trace elements in tissue. I Normal tissue Cancer (Philad) 9:499–511

    Article  CAS  Google Scholar 

  51. ICRP (1960) Report of Committee III on protection against X-rays up to energies of 3 MeV and beta- and gamma-rays from sealed sources. ICRP Publication 3. Pergamon Press, Oxford

  52. Kerr WK, Keresteci AG, Mayon H (1960) The distribution of zinc within the human prostate. Cancer (Philad) 13:550–554

    Article  CAS  Google Scholar 

  53. Shirakawa T (1961) Clinical and experimental study on quantitative analysis of zinc in prostate. Acta Urol Jap 7:352–362

    Google Scholar 

  54. Zakutinsky DI, Parfyenov YD, Selivanova LN (1962) Data book on the radioactive isotopes toxicology. State Publishing House of Medical Literature, Moscow

    Google Scholar 

  55. Tipton IH, Cook MJ (1963) Trace elements in human tissue. Part II. Adult subjects from the United States. Health Phys 9:103–145

    Article  CAS  PubMed  Google Scholar 

  56. Schrodt GR, Hall T, Whitmore WRJr (1964) The concentration of zinc in diseased human prostate glands. Cancer (Philad), 17:1555–1566

  57. Sangen H (1967) The influence of the trace metals upon the aconitase activity in human prostate glands. Jap J Urol 58:1146–1159

    Article  CAS  PubMed  Google Scholar 

  58. Schroeder HA, Nason AP, Tipton IH, Balassa JJ (1967) Essential trace metals in man: zinc. Relation to environmental cadmium. J Chronic Dis 20:179–210

    Article  CAS  PubMed  Google Scholar 

  59. Kar AB, Chowdhury AR (1968) Distribution of zinc in the subcellular fractions of human prostate. Curr Sci 37:375–376

    Google Scholar 

  60. Liebscher K, Smith H (1968) Essential and nonessential trace elements. A method of determining whether an element is essential or nonessential in human tissue. Arch Environ Health 17:882–891

    Article  Google Scholar 

  61. Hienzsch E, Schneider H-J, Anke M (1970) Vergleichende Untersuchungen zum Mengen- und Spurenelementgehalt der normalen Prostata, des Prostataadenoms und des Prostatakarzinoms. Z Urol Nephrol 63:543–546

    CAS  PubMed  Google Scholar 

  62. Mikac-Devic D (1970) Methodology of zinc determinations and the role of zinc in biochemical processes. Adv Clin Chem 13:271–333

    Article  CAS  PubMed  Google Scholar 

  63. Schneider H-J, Anke M, Holm W (1970) The inorganic components of testicle, epididymis, seminal vesicle, prostate and ejaculate of young men. Int Urol Nephrol 2:419–427

    Article  CAS  Google Scholar 

  64. Soman SD, Joseph KT, Raut SJ, Mulay GD, Parameswaran M, Pandey VK (1970) Studies of major and trace element content in human tissues. Health Phys 19:641–656

    Article  CAS  PubMed  Google Scholar 

  65. Holm W, Schneider H-J, Anke M (1971) Der Mineralstoffgehalt des Ejakulates und seine Beziehung zum Mengen- und Spurenelementgehalt von Prostate, Samenblase, Nebenhoden und Hoden. Arch Exper Vet Med 25:811–815

    CAS  Google Scholar 

  66. Boström K, Andersson L (1971) Creatine phosphokinase relative to acid phosphatase, lactate dehydrogenase, zinc and fructose in human semen with special reference to chronic prostatitis. Scand J Urol Nephrol 5:123–132

    Article  PubMed  Google Scholar 

  67. Forssen A (1972) Inorganic elements in the human body. I. Occurrence of Ba, Br, Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y and Zn in the human body. Ann Med Exp Biol Fenn 50:99–162

    CAS  PubMed  Google Scholar 

  68. Lindholmer C, Glaumann H (1972) Zinc and magnesium in human male reproductive tract. Andrologie (Berlin) 4:231–237

    Article  CAS  Google Scholar 

  69. Anspaugh LR, Robinson WL, Martin WH. Lowe OA (1971–1973) Compilation of published information on elemental concentrations in human organs in both normal and diseased states. No. UCRL-51013Pt., pp 1-4

  70. Dhar NK, Goel TC, Dube PC, Chowdhury AR, Kar AB (1973) Distribution and concentration of zinc in the subcellular fractions of benign hyperplastic and malignant neoplastic human prostate. Exp Mol Pathol 19:139–142

    Article  CAS  PubMed  Google Scholar 

  71. Györkey F(1973) Some aspects of cancer of the prostate gland. In: Methods in cancer research. Vol. 10. (Ed.: Busch H.). Academic Press, New York, pp 279–386

  72. Müntzing J, Nilson T, Polasek J (1974) Zinc and β-glucuronidase in human prostate. Scand J Urol Nephrol (Stockholm) 8:87–90

    Article  Google Scholar 

  73. Habib FK, Hammond GL, Lee JR, Dawson JB, Mason MK, Stitch SR, Stitch SR (1976) Metal-androgen interrelationships in carcinoma and hyperplasia of the human prostate. J Endocrinol 71:133–142

    Article  CAS  PubMed  Google Scholar 

  74. Kubo H, Hashimoto S, Ishibashi A, Chiba R, Yokota H (1976) Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections. Med Phys 3:204–209

    Article  CAS  PubMed  Google Scholar 

  75. Hienzsch E, Schneider H-J, Anke M, Hennig A, Groppel B (1979) The cadmium-, zinc-, copper-, and manganese- level of different organs of human beings without considerable Cd-exposure independence on age and sex. In: Anke M, Schneider H-J (eds) Kadmiumsymposium. Wissenschaftliche Beiträge der Friedrich-Schiller-Universität, Jena, pp 276–282

    Google Scholar 

  76. Habib FK (1980) Evaluation of androgen metabolism studies in human prostate cancer – correlation with zinc levels. Prev Med 9:650–656

    Article  CAS  PubMed  Google Scholar 

  77. Jafa A, Mahendra NM, Chowdhury AR, Kamboj VP (1980) Trace elements in prostatic tissue and plasma in prostatic diseases of man. Indian J Cancer 17:34–37

    CAS  PubMed  Google Scholar 

  78. Leissner KM, Fielkegard B, Tisell LE (1980) Concentration and content of zinc in human prostate. Investig Urol 18:32–35

    CAS  Google Scholar 

  79. Maganto PE (1980) Zinc levels in the normal and pathological prostate tissue. Actas Urol Esp 4:15–20

    Google Scholar 

  80. Feustel A, Wennrich R, Steiniger D, Klauss P (1982) Zinc and cadmium concentration in prostatic carcinoma of different histological grading in comparison to normal prostate tissue and adenofibromyomatosis (BPH). Urol Res 10:301–303

    Article  CAS  PubMed  Google Scholar 

  81. Tisell LE, Fjelkegard B, Leissner KH (1982) Zinc concentration and content of the dorsal, lateral and medial prostatic lobes and of periurethral adenomas in man. J Urol 128:403–405

    Article  CAS  PubMed  Google Scholar 

  82. Marezynska A, Kulpa J, Lenko J (1983) The concentration of zinc in relation to fundamental elements in the diseased human prostate. Int Urol Nephrol 15:257–265

    Article  Google Scholar 

  83. Feustel A, Wennrich R (1984) Zinc and cadmium in cell fractions of prostatic cancer tissue of different histological grading in comparison to BPH and normal prostate. Urol Res 12:147–150

    CAS  PubMed  Google Scholar 

  84. Lahtonen R (1985) Zinc and cadmium concentrations in whole tissue and in separated epithelium and stroma from human benign prostatic hypertrophic glands. Prostate 6:177–183

    Article  CAS  PubMed  Google Scholar 

  85. Wennrich R, Feustel A (1985) Determination of cadmium and zinc in human prostatic tissues by flameless AAS. Z Med Lab Diagn 26:365–369

    CAS  PubMed  Google Scholar 

  86. Feustel A, Wennrich R, Dittrich H (1987) Zinc, cadmium and selenium concentrations in separated epithelium and stroma from prostatic tissues of different histology. Urol Res 15:161–163

    Article  CAS  PubMed  Google Scholar 

  87. Ogunlewe JO, Osegbe DN (1989) Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 63:1388–1392

    Article  CAS  PubMed  Google Scholar 

  88. Saltzman BE, Gross SB, Yeager DW, Meiners BG, Gartside PS (1990) Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ Res 52:126–145

    Article  CAS  PubMed  Google Scholar 

  89. Picurelli L, Olcina PV, Roig MD, Günthner S, Ferrer J (1991) Determination and relationship of the copper and zinc concentrations in normal and pathologic prostatic tissue. Trace Elem Med 8:131–137

    Google Scholar 

  90. Oldereid NB, Thomassen Y, Attramadal A, Olaisen B, Purvis K (1993) Concentrations of lead, cadmium and zinc in the tissues of reproductive organs of men. J Reprod Fertil 99:421–425

    Article  CAS  PubMed  Google Scholar 

  91. Borowiec D, Spruch T, Juszkiewicz M (1995) The measurements of the selected trace element levels in the prostate. Urol Pol 48:1–5

    Google Scholar 

  92. Brys M, Nawrocka AD, Miekos E, Zydek C, Foksinski M, Berecki A, Krajewska W (1997) Zinc and cadmium analysis in human prostate neoplasmas. Biol Trace Elem Res 59:145–152

    Article  CAS  PubMed  Google Scholar 

  93. Banaś A, Kwiatek WM, Zając W (2001) Trace element analysis of tissue section by means of synchrotron radiation: the use of GNUPLOT for SPIXE spectra analysis. J Alloys Compd 328:135–138

    Article  Google Scholar 

  94. Kwiatek WM, Hanson AL, Paluszkiewicz C, Gałka M, Gajda M, Cichocki T (2004) Application of SRIXE and XANES to the determination of the oxidation state of iron in prostate tissue sections. J Alloys Compd 362:83–87

    Article  CAS  Google Scholar 

  95. Galván-Bobadilla AI, García–Escamilla RM, Gutiérrez-García N, Mendoza-Magaña ML, Rosiles-Martínez R (2005) Cadmium and zinc concentrations in prostate cancer and benign prostate hyperplasia. Rev Latinoamer Patol Clin 52(2):109–117

  96. Kwiatek WM, Banas A, Gajda M, Gałka M, Pawlicki B, Falkenberg G, Cichocki T (2005) Cancerous tissues analyzed by SRIXE. J Alloys Compd 401:173–177

    Article  CAS  Google Scholar 

  97. Kwiatek WM, Banas A, Banas K, Podgorczyk M, Dyduch G, Falkenberg G, Gajda M, Cichocki T (2006) Distinguishing prostate cancer from hyperplasia. Acta Phys Polon 109:377–381

    Article  CAS  Google Scholar 

  98. Guntupalli JNR, Padala S, Gummuluri AVRM, Muktineni RK, Byreddy SR, Sreerama L, Kedarisetti PC, Angalakuduru DP, Satti BR, Venkatathri V, Pullela VBRL, Gavarasana S (2007) Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 16:108–115

    Article  CAS  PubMed  Google Scholar 

  99. Sarafanov AG, Todorov TI, Kajdacsy-Balla A, Gray MA, Macias V, Centeno JA (2008) Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry. J Trace Elem Med Biol 22:305–314

    Article  CAS  PubMed  Google Scholar 

  100. Sapota A, Daragó A, Taczalski J, Kilanowicz A (2009) Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. BioMetals 22:1041–1049

    Article  CAS  PubMed  Google Scholar 

  101. Tohno S, Kobayashi M, Shimizu H, Tohno Y, Suwannahoy P, Azuma C, Minami T, Sinthubua A, Mahakkanukrauh P (2009) Age-related changes of the concentrations of select elements in the prostates of Japanese. Biol Trace Elem Res 127:211–227

    Article  CAS  PubMed  Google Scholar 

  102. Zaichick S, Zaichick V (2010) Method and portable facility for energy-dispersive X-ray fluorescent analysis of zinc content in needle-biopsy specimens of prostate. X-Ray Spectrom 39:83–89

    Article  CAS  Google Scholar 

  103. Christudoss P, Selvakumar R, Fleming JJ, Gopalakrishnan G (2011) Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J Urol 27:14–18

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zaichick S, Zaichick V (2011) The Br, Fe, Rb, Sr, and Zn content and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy dispersive X-ray fluorescent analysis. X-Ray Spectrom 40:464–469

    Article  CAS  Google Scholar 

  105. Zaichick S, Zaichick V (2011) The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot 69:827–833

    Article  CAS  PubMed  Google Scholar 

  106. Zaichick V, Nosenko S, Moskvina I (2012) The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res 147:49–58

    Article  CAS  PubMed  Google Scholar 

  107. Zaichick S, Zaichick V, Nosenko S, Moskvina I (2012) Mass fractions of 52 trace elements and zinc trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res 149:171–183

    Article  CAS  PubMed  Google Scholar 

  108. Leitão RG, Palumbo A, Souza PAVR, Pereira GR, Canellas CGL, Anjos MJ, Nasciutti LE (2014) Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence. Radiat Phys Chem 95:62–64

    Article  CAS  Google Scholar 

  109. Neslund-Dudas C, Kandegedara A, Kryvenko ON, Gupta N, Rogers C, Rybicki BA, Ping Dou Q, Mitra B (2014) Prostate tissue metal levels and prostate cancer recurrence in smokers. Biol Trace Elem Res 157:107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zaichick S, Zaichick V (2014) EDXRF determination of trace element contents in benign prostatic hypertrophic tissue. In: Fundamental interactions and neutrons, neutron spectroscopy, nuclear structure, ultracold neutrons, related topics. Dubna, Joint Institute for Nuclear Research, pp 311–316

    Google Scholar 

  111. Zaichick V, Zaichick S (2014) Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 36:167–181

    Article  CAS  PubMed  Google Scholar 

  112. Zaichick V, Zaichick S (2014) INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 90:62–73

    Article  CAS  PubMed  Google Scholar 

  113. Zaichick V, Zaichick S (2014) Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open J Biochem 1(2):16–33

    Google Scholar 

  114. Zaichick V, Zaichick S (2014) Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 301:383–397

    Article  CAS  Google Scholar 

  115. Zaichick S, Zaichick V (2015) Prostatic tissue level of some androgen dependent and independent trace elements in patients with benign prostatic hyperplasia. Androl Gynecol: Curr Res 3:3

    Article  Google Scholar 

  116. Zaichick V, Zaichick S, Davydov G (2015) Differences between chemical element contents in hyperplastic and nonhyperplastic prostate glands investigated by neutron activation analysis. Biol Trace Elem Res 164:25–35

    Article  CAS  PubMed  Google Scholar 

  117. Zaichick V (2015) The variation with age of 67 macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res 168:44–60

    Article  CAS  PubMed  Google Scholar 

  118. Rossmann M, Zaichick S, Zaichick V (2016) Distinguishing malignant from benign prostate tumors using Br, Fe, Rb, Sr, and Zn content in prostatic tissue. Clin Oncol 1:1054

    Google Scholar 

  119. Zaichick V, Zaichick S (2016) Trace element contents in adenocarcinoma of human prostate investigated by energy dispersive X-ray fluorescent analysis. J Adenocarcinoma 1:1

    Article  Google Scholar 

  120. Zaichick V, Zaichick S (2016) Trace element contents in adenocarcinoma of the human prostate gland investigated by neutron activation analysis. Cancer Res Oncol 1:002

    Google Scholar 

  121. Zaichick V, Zaichick S (2016) The comparison between the contents and interrelationships of 17 chemical elements in normal and cancerous prostate gland. JPS Open Access 1(1):1–10

    Google Scholar 

  122. Zaichick V, Zaichick S (2016) Prostatic tissue level of some major and trace elements in patients with BPH. J J Nephro Urol 3(1):1–10

    Google Scholar 

  123. Zaichick V, Zaichick S (2016) Distinguishing malignant from benign prostate using content of 17 chemical elements in prostatic tissue. Integr Cancer Sci Therap 3(5):579–587

    Article  Google Scholar 

  124. Zaichick S, Zaichick V (2016) Prostatic tissue levels of 43 trace elements in patients with BPH. Br J Med Med Res 15(2):1–12

    Article  Google Scholar 

  125. Zaichick V, Zaichick S (2016) Prostatic tissue levels of 43 trace elements in patients with prostate adenocarcinoma. Cancer Clin Oncol 5(1):79–94

    Article  Google Scholar 

  126. Zaichick V, Zaichick S (2016) Variations in concentration and distribution of several androgen-dependent and independent trace elements in nonhyperplastic prostate gland tissue throughout adulthood. J Androl Gynaecol 4(1):10

    Google Scholar 

  127. Zaichick V, Zaichick S (2016) Variations in concentration and histological distribution of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn in nonhyperplastic prostate gland throughout adulthood. J J Cell Mol Bio 2(1):011

    Google Scholar 

  128. Zaichick V, Zaichick S (2016) Age-related changes in concentration and histological distribution of 18 chemical elements in nonhyperplastic prostate of adults. World J Pharm Med 2(4):5–18

    Google Scholar 

  129. Zaichick V, Zaichick S (2016) Age-related changes in concentration and histological distribution of 54 trace elements in nonhyperplastic prostate of adults. Int Arch Urol Complic 2(2):019

    Article  Google Scholar 

  130. Zaichick V, Zaichick S (2017) Trace element levels in prostate gland as carcinoma’s markers. J Cancer Ther 8:131–145

    Article  CAS  Google Scholar 

  131. Zaichick V, Zaichick S (2017) Chemical element contents in normal and benign hyperplastic prostate. Ann Mens Health Wellness 1(2):1006

    Google Scholar 

  132. Zaichick V (2017) Differences between 66 chemical element contents in normal and cancerous prostate. J Anal Oncol 6:37–56

    Article  CAS  Google Scholar 

  133. Zaichick V, Zaichick S (2019) Comparison of 66 chemical element contents in normal and benign hyperplastic prostate. Asian J Urol 6:275–289

    Article  PubMed  Google Scholar 

  134. Woodard HQ, White DR (1986) The composition of body tissues. Br J Radiol 59:1209–1218

    Article  CAS  PubMed  Google Scholar 

  135. Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health. In: Harmonization of health-related environmental measurements using nuclear and isotopic techniques. IAEA, Vienna, pp. 123–133

  136. Zaichick V (2004) Losses of chemical elements in biological samples under the dry ashing process. Trace Elem Med (Moscow) 5(3):17–22

    Google Scholar 

  137. Habib FK, Hammond GL, Lee JR, Dawson JB, Mason MK, Stitch SR, Stitch SR (1976) Metal-androgen interrelationships in carcinoma and hyperplasia of the human prostate. J Endocrinol 71:133–142

    Article  CAS  PubMed  Google Scholar 

  138. Habib FK, Leake A, Beynon L, Chisholm GD (1984) Studies on the relationship between zinc and androgens in the human prostate. Adv Urol Oncol Endocrinol, Rome, pp 143–150

    Google Scholar 

  139. Deering RE, Choongkittaworn M, Bigler SA, Aramburu E, King J, Brawer MK (1994) Morphometric quantitation of stroma in human benign prostatic hyperplasia. Urology 44:64–67

    Article  CAS  PubMed  Google Scholar 

  140. Zaichick V, Sviridova T, Zaichick S (1996) Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer. Int Urol Nephrol 28:687–694

    Article  CAS  PubMed  Google Scholar 

  141. Mackenzie AR, Hall T, Whitmore WFJr (1962) Zinc content of expressed human prostate fluid. Nature 193(4810):72–73

  142. Kavanagh JP (1983) Zinc binding properties of human prostatic tissue, prostatic secretion and seminal fluid. J Reprod Fertil 68:359–363

    Article  CAS  PubMed  Google Scholar 

  143. Gómes Y, Arocha F, Espinoza F, Fernandez D, Vásquez A, Granadillo V (2007) Niveles de zinc en líquido prostático de pacientes con patologías de próstata. Investig Clin 48(3):287–294

    Google Scholar 

  144. Zaichick V, Zaichick S, Davydov G (2016) Method and portable facility for measurement of trace element concentration in prostate fluid samples using radionuclide-induced energy-dispersive X-ray fluorescent analysis. Nucl Sci Tech 27(6):1–8

    Article  Google Scholar 

  145. Zaichick V, Zaichick S (2018) Effect of age on the Br, Fe, Rb, Sr, and Zn concentrations in human prostatic fluid investigated by energy-dispersive X-ray fluorescent microanalysis. MicroMed. 6:94–104

    Google Scholar 

  146. Iyengar GV (1998) Reevaluation of the trace element content in reference men. Radiat Phys Chem 51:545–560

    Article  CAS  Google Scholar 

  147. Zaichick V, Tsyb A, Matveenko E, Chernichenko I (1996) Instrumental neutron activation analysis of essential and toxic elements in the child and adolescent diets in the Chernobyl disaster territories of the Kaluga Region. Sci Total Environ 192:269–274

    Article  CAS  PubMed  Google Scholar 

  148. Kothar RP, Chaudhari AR (2016) Zinc levels in seminal fluid in infertile males and its relation with serum free testosterone. J Clin Diagn Res 10(5):CC05–CC08

    Google Scholar 

  149. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, Sun B, Wang Q, Wu Q, Li L (2016) Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 6:22386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kerns K, Zigo M, Sutovsky P (2018) Zinc: a necessary ion for mammalian sperm fertilization competency. Int J Mol Sci 19(12):4097

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zaichick.

Ethics declarations

Conflict of Interest

The author declares that there is no conflict of interest.

Additional information

The manuscript is dedicated to the blessed memory of my good friend Prof. Dr. Nicholas M. Spyrou (Chair in Radiation and Medical Physics, University of Surrey, UK), who was a world pioneer in the field of in vivo neutron activation analysis.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichick, V. A Systematic Review of the Zinc Content of the Normal Human Prostate Gland. Biol Trace Elem Res 199, 3593–3607 (2021). https://doi.org/10.1007/s12011-020-02495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02495-z

Keywords