Skip to main content

Advertisement

Log in

Chromium Exposure Causes Structural Aberrations of Erythrocytes, Gills, Liver, Kidney, and Genetic Damage in Striped Catfish Pangasianodon hypophthalmus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution due to anthropogenic activities poses a great threat to aquatic organisms. The present study was conducted to evaluate the cytotoxic and genotoxic effects of hexavalent chromium (potassium dichromate) on hemato-biochemical, histo-pathological, and genetical changes in striped catfish Pangasianodon hypophthalmus. Three sub-lethal doses (0.8, 1.6, and 3.2 mg/L) of chromium (Cr) were selected and fish were exposed in vivo contrasting with a control (0 mg/L) for 30 days. The study revealed that various hemato-biochemical parameters showed a significant decrease in hemoglobin (Hb), red blood cells (RBCs), and blood glucose content, whereas white blood cells (WBCs) significantly increased in Cr exposed fish. Frequencies of all forms of structural abnormalities of erythrocytes (erythrocytic cellular abnormalities; ECA, erythrocytic nuclear abnormalities; ENA and erythroblasts; Ebs) were significantly increased in higher two test concentrations (1.6 and 3.2 mg/L) when compared to control. Differential leucocyte count exhibited significant increase in neutrophil and decrease in lymphocytes in the highest Cr treated group. The severity of various histo-pathological changes in the gills, liver, and kidney were increased considerably with the increase of Cr concentrations. Similarly, the amount of DNA (ng/μl) decreased significantly in blood and tissues of different vital organs where the liver showed the highest decline compared to control in a concentration-dependent manner. Taken altogether, P. hypophthalmus is susceptible to Cr and can be used as a bio-indicator to assess aquatic metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing are not applicable to this article. The data that support the findings of this study are available on request from the corresponding author (M. Shahjahan).

References

  1. Gayathri R, Nambiar K, Raveendran CZ, Jaleel CA (2008) A glimpse of lignicolous marine fungi occurring in coastal water bodies of Tamil Nadu (India). CR Biol 331:475–480

    Article  Google Scholar 

  2. Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167:366–373

    Article  CAS  PubMed  Google Scholar 

  3. Asthana M, Kumar A, Sharma BS (2017) Wastewater treatment. In: Singh RL (ed) Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore, pp 173–232

    Chapter  Google Scholar 

  4. Singarea PU, Dhabardeb SS (2014) Toxic metals pollution due to industrial effluents released along Dombivali Industrial Belt of Mumbai, India. Eur J Env Safety Sci 2:5–11

    Google Scholar 

  5. Ahmed MS, Aslam Y, Khan WA (2011) Absorption and bioaccumulation of water-borne inorganic mercury in the fingerlings of grass carp, Ctenopharyn godonidella. J Anim Plant Sci 21:176–181

    CAS  Google Scholar 

  6. Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, carassius auratus. Mutat Res 698:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azim MA, Quraisi SB, Islam R (2009) Impact of dumping untreated waste water on water quality of the river Buriganga, Bangladesh. Dhaka Univ J Sci 57(1):101–106

    CAS  Google Scholar 

  8. Islam MZ, Azim MA, Islam R, Quraisi SB (2008) Seasonal variation of heavy metals in water samples from Shitalakhya river. J Bangladesh Acad Sci 32(1):13–22

    Article  CAS  Google Scholar 

  9. Hasan MK, Khan MR, Nesha MK, Happy MA (2014) Analysis of water quality using chemical. Open J Water Pollut Treat 1(2):58–74

    Article  Google Scholar 

  10. Rahman H, Hoque N, Sarker PK, Safa A (2020) Assessment of hexavalent chromium pollution in Buriganga and Dhaleshwari river water bodies adjacent to Tannery Estates in Bangladesh. MIST Int J Sci Tench 08:11–15

    Article  Google Scholar 

  11. Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarker of oxidative stress and heavy metal levels as induced by environmental pollution in African cat fish Clarias gariepinus from Nigeria Ogun river. Int J Environ Res Public Health 4:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogamba EN, Izah SC, Isimayemiema F (2016) Bioaccumulation of heavy metals in the gill and liver of a common Niger Delta wetland fish, Clarias Garepinus. British J Appl Res 1:0017–0020

    Google Scholar 

  13. Hedayati A, Safahieh A, Savari A, Marammazi JG (2010) Detection of range finding test of mercury chloride in yellow sea bream (Acanthopagruslatus). Iran J Energy Environ 1:228–233

    Google Scholar 

  14. Garima P (2016) Effect of cadmium sulphate on certain biochemical parameters of teleost, Clarias batrachus. World J Pharm Res 5:1004–1011

    Google Scholar 

  15. Mohammad MN, Authman Zaki MS, Khallaf EA, Abbas HH (2015) Use of fish as bio-indicator of the effects of heavy metals pollution. J Aquac Res Develop 6:328

    Google Scholar 

  16. Joseph A, Olugbojo AA, Akinyemi (2016) Assessment of heavy metals in different body parts of Sarotherodon galillaeus from Ilo-Idimu River, Otaogun State, Nigeria. J Aquacult Eng Fish Res 2:36–41

    Google Scholar 

  17. Blaxhall PC (1972) The hematological assessment of the health of freshwater fishes: a review of selected literatures. J Fish Biol 4:593–604

    Article  CAS  Google Scholar 

  18. Mallesh B, Pandey PK, Kumar K, Vennila A, Kumar S (2015) Bioconcentration of hexavalent chromium in Cirrhinus mrigala (Ham 1822): effect on haematological parameters. J Bio Earth Sci 5:59–67

    CAS  Google Scholar 

  19. Benjamin LV, Kutty R (2019) Sub-lethal effects of potassium dichromate on hematological and histological parameters in climbing perch, Anabas testudineus (Anabantidae). Int J Aquat Biol 7:140–145

    Google Scholar 

  20. De Lemos CT, Rodel PM, Terra NR, Erdtmann B (2001) Evaluation of basal micronucleus frequency and hexavalent chromium effects in fish erythrocytes. Environ Toxicol Chem 20:1320–1324

    Article  PubMed  Google Scholar 

  21. Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26:205–213

    Article  CAS  PubMed  Google Scholar 

  22. Anbumani S, Mohankumar MN (2012) Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla. Aquat Toxicol 122-123:125–132

    Article  CAS  PubMed  Google Scholar 

  23. Sadiqul IM, Ferdousa Z, Nannu MTA, Mostakim GM, Rahman MK (2016) Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environ Pollut 219:949–956

    Article  CAS  PubMed  Google Scholar 

  24. Shahjahan M, Rahman MS, Islam SMM, Uddin MH, Al-Emran M (2019) Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish Danio rerio. Environ Sci Pollut Res 26:36903–36912

    Article  CAS  Google Scholar 

  25. Cavas T, Ergene-Gozukara S (2005) Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquat Toxicol 74:264–271

    Article  CAS  PubMed  Google Scholar 

  26. Farag MR, Alagawany M (2017) Erythrocytes as a biological model for screening of xenobiotics toxicity. Chemico-Biol Interact 279:73–83

    Article  CAS  Google Scholar 

  27. Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L (2006) The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 76:246–257

    Article  CAS  PubMed  Google Scholar 

  28. Kumar P, Kumar R, Nagpure NS, Nautiyal P, Dabas A, Kushwaha B, Lakra WS (2012) Genotoxic and mutagenic assessment of hexavalent chromium in fish following in vivo chronic exposure. Hum Ecol Risk Assess 18:855–870

    Article  CAS  Google Scholar 

  29. Nagpure NS, Srivastava R, Kumar R, Kushwaha B, Srivastava SK, Kumar P, Dabas A (2015) Assessment of genotoxic and mutagenic potential of hexavalent chromium in the freshwater fish Labeo rohita (Hamilton, 1822). Drug Chem Toxicol 38:9–15

    Article  CAS  PubMed  Google Scholar 

  30. Gad NS, Saad SA (2008) Effect of environmental pollution by phenol on some physiological parameters of Oreochromis niloticus. Glob Vet 2(6):312–319

    Google Scholar 

  31. Monteiro SM, Mancera JM, Fontainhas FA, Sousa M (2005) Copper induced alterations of biochemical parameter in the gill and plasma of Oreochromis niloticus. Comp Biochem Physiol C 141:375–383

    Google Scholar 

  32. Ahmed MK, Al-Mamun MH, Parvin E, Akter MS, Khan MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, Tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65:903–909

    Article  CAS  PubMed  Google Scholar 

  33. Mela M, Randi MAF, Ventura DE, Carvalho CEV, Pelletier E, Oliveira RCA (2007) Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecol Toxicol Environ Safe 68:426–435

    Article  CAS  Google Scholar 

  34. Au DWT (2004) The application of histocyto-pathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull 48:817–834

    Article  CAS  PubMed  Google Scholar 

  35. El-Serafy SS, Abdel-Hameid NAH, El-Daly AA (2009) Histological and histochemical alterations induced by phenol exposure in Oreochromi saureus (Steindachner, 1864) juveniles. Egypt J Aquat Bio Fish 13:151–172

    Article  Google Scholar 

  36. Figuiredo-Fernandes A, Rontainhas-Fernandes A, Rocha E, Reis-Henriques MA (2006) The effect of paraquat on hepatic EROD activity, liver and gonadal histology in males and females of Nile Tilapia, Oreochromis niloticus, exposed at different temperatures. Arch Environ Contam Toxicol 51:626–632

    Article  CAS  Google Scholar 

  37. Barhoumi S, Messaoudi I, Gagne F, Kerkeni A (2012) Spatial and seasonal variability of some biomarkers in Salaria basilisca (Pisces: Blennidae): Implication for biomonitoring in Tunisian coasts. Ecol Indic 14:222–228

    Article  CAS  Google Scholar 

  38. Soufy HM, Soliman E, Manakhly EI, Gaafa A (2007) Some biochemical and pathological investigations on mono sex tilapia following. Bull Environ Contam Toxicol 43:315–320

    Google Scholar 

  39. Abdel-Moneim AM, Al-Kahtani MA, Dlmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88:1028–1035

    Article  CAS  PubMed  Google Scholar 

  40. Oliveira Ribeiro CA, Filipack F, Mela M, Silva PH, Randi MAF, Costa JRA, Pelletier E (2006) Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin chloride. Environ Res 101:74–80

    Article  CAS  PubMed  Google Scholar 

  41. Bakshi A, Panigrahi AK (2018) A comprehensive review on chromium induced alterations in fresh water fishes. Toxicol Rep 5:440–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali H, Rahman MM, Murshed-e-Jahan K, Dhar GC (2018) Production economics of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming under polyculture system in Bangladesh. Aquaculture 491:381–390

    Article  Google Scholar 

  43. Fisheries Resources Survey System (2018) Fisheries statistical report of Bangladesh, Department of Fisheries. Bangladesh. 32, 1-57

  44. Islam SMM, Rohani MF, Zabed SA, Islam MT, Jannat R, Akter Y, Shahjahan M (2020) Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicol Rep 7:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palanippan PLRM, Karthikeyan S (2009) Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci 21:229–236

    Article  CAS  Google Scholar 

  46. Jahan A, Nipa TT, Islam SMM, Uddin MH, Islam MS, Shahjahan M (2019) Striped catfish (Pangasianodon hypophthalmus) could be suitable for coastal aquaculture. J Appl Ichthyol 35:994–1003

    CAS  Google Scholar 

  47. Shahjahan M, Uddin MH, Bain V, Haque MM (2018) Increased water temperature altered hemato-biochemical parameters and structure of peripheral erythrocytes in striped catfish Pangasianodon hypophthalmus. Fish Physiol Biochem 44:1309–1318

    Article  CAS  PubMed  Google Scholar 

  48. Carrasco K, Tilbury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47:2123–2136

    Article  CAS  Google Scholar 

  49. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) Human Micronucleus Project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  CAS  PubMed  Google Scholar 

  50. Mishra AK, Mohanty B (2008) Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the 422 freshwater fish, Channa punctatus (Bloch). Environ Toxicol Pharmcol 26:136–141

    Article  CAS  Google Scholar 

  51. Walker PA, Kille P, Hurley A, Bury NR, Hogstrand C (2008) An in vitro method to assess toxicity of waterborne metals to fish. Toxicol Appl Pharmacol 230:67–77

    Article  CAS  PubMed  Google Scholar 

  52. Venkatachalam T, Natarajan AV (2014) Haematological investigation on freshwater teleost Labeorohita (Ham.) following aquatic toxicities of Cr (III) and Cr (VI). Int Res Biosci 3:1–14

    Google Scholar 

  53. Witeska M (2004) The effect of toxic chemicals on blood cell morphology in fish. Fresenius Environ Bull 12a:1

    Google Scholar 

  54. Nussey G, Van Vuren JHJ, Du Preez HH (1995) Effect of copper on the differential white blood cell counts of the Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol 111:381–388

    Google Scholar 

  55. Gill TS, Pant JC (1987) Hematological and pathological effects of chromium toxicosis in the freshwater fish, Barbus conchonius Ham. Water Air Soil Pollut 35:241–250

    Article  CAS  Google Scholar 

  56. Pamila D, Subbaiyan PA, Ramaswamy M (1991) Toxic effect of chromium, and cobalt on Sartherodon mossambicus (peters). Ind J Environ Health 33:218–224

    CAS  Google Scholar 

  57. Joshi PK, Bose M, Harish D (2002) Changes in certain haematological parameters in a siluroid cat fish Clarias batrachus (Linn) exposed to cadmium chloride. Pollut Res 21:129

    CAS  Google Scholar 

  58. Nath R, Banerjee V (1995) Effects of various concentrations of lead nitrate on haematological parameters of an air breathing fish, Clarias batrachus. J Freshw Biol 7:267–268

    Google Scholar 

  59. Mazon AF, Monteiro EAS, Pinheiro GHD, Fernadez MN (2002) Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz J Biol 62:4a

    Article  Google Scholar 

  60. Shahjahan M, Khatun MS, Mun MM, Islam SMM, Uddin MH, Badruzzaman M, Khan S (2020) Nuclear and cellular abnormalities of erythrocytes in response to thermal stress in common carp Cyprinus carpio. Front Physiol 11:543. https://doi.org/10.3389/fphys.2020.00543

    Article  PubMed  PubMed Central  Google Scholar 

  61. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  62. Bilandzic N, Zuric M, Lojkic M, Simic B, Milic D, Barac I (2006) Cortisol and immune measures in boars exposed to 3-day administration of exogenous adrenocorticotropic hormone. Vet Res Commun 30:433–444

    Article  CAS  PubMed  Google Scholar 

  63. Brown LA (1993) Anesthesia and restraint. In: Stoskopf MK (ed) Fish medicine. W.B. Saunders Company, Philadelphia, pp 79–90

    Google Scholar 

  64. Beyea MM, Benfey TJ, Kieffer JD (2005) Hematology and stress physiology of juvenile diploid and triploid shortnose sturgeon (Acipenser brevirostrum). Fish Physiol Biochem 31:303–313

    Article  CAS  Google Scholar 

  65. Vosyliene M (1999) The effect of heavy metals on hematological indices of fish (Survey). Acta Zool Lituanica Hydrobiol 9:76–82

    Article  Google Scholar 

  66. Martinez CBR, Nagae MY, Zaia CTBV, Zai DAM (2004) Acute morphological and physiological effects of lead in the neotropical fish, Prochidolus lineatus. Braz J Biol 64:797–807

    Article  CAS  PubMed  Google Scholar 

  67. Firat O, Kargın F (2010) Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch Environ Contam Toxicol 58:151–157

    Article  CAS  PubMed  Google Scholar 

  68. Witeska M, Kondera E, Szczygielska K (2010) The effects of cadmium on common carp erythrocyte morphology. Pol J Environ Stud 20:783–788

  69. Islam SMM, Rahman MA, Nahar S, Uddin MH, Haque MM, Shahjahan M (2019) Acute toxicity of an organophosphate insecticide sumithion to striped catfish Pangasianodon hypophthalmus. Toxicol Rep 6:957–962

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ashaf-Ud-Doulah M, Shahjahan M, Islam SMM, Al-Emran M, Rahman MS, Hossain MAR (2019) Thermal stress causes nuclear and cellular abnormalities of peripheral erythrocytes in Indian major carp, rohu Labeo rohita. J Therm Biol 86:102450

    Article  CAS  PubMed  Google Scholar 

  71. Ahmed MK, Kundu GK, Al-Mamun MH, Sarkar SK, Akter MS, Khan MS (2013) Chromium (VI) induced acutetoxicity and genotoxicity in freshwater stinging catfish, Heteropneustes fossilis. Ecotox Environ Safe 92:64–70

    Article  CAS  Google Scholar 

  72. Nagpure AS, Gurjar BR, Martel J (2014) Human health risks in national capital territory of Delhi due to air pollution. Atmos Pollut Res 5:371–380

    Article  CAS  Google Scholar 

  73. Hussain R, Mahmood F, Khan A, Javed MT, Rehan S, Mehdi T (2012) Cellular and biochemical effects induced by atrazine on blood of male Japanese quail (Coturnix japonica). Pestic Biochem Physiol 103:38–42

    Article  CAS  Google Scholar 

  74. Andreikėnaitė L, Baršienė J, Vosylienė MZ (2007) Studies of micronuclei and other nuclear abnormalities in blood of rainbow trout (Oncorhynchus mykiss) treated with heavy metal mixture and road maintenance salts. Acta Zool Litu 17:213–219

    Article  Google Scholar 

  75. Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23(4):275–281. https://doi.org/10.1080/21658005.2013.846963

    Article  Google Scholar 

  76. Kumar MV (2016) Morphometric studies of blood cells in Cyprinus carpio, Ctenopharyngodan idella and Hypophthalmichthys molitrix cultured fish in west Godavari region of Andhra Pradesh. Int J Fish Aquat Stud 4(5):489–493

    Google Scholar 

  77. Lecklin T, Tuominen A, Nikinmaa M (2000) The adrenergic changes of immature and mature rainbow trout (Oncorhynchus mykiss) erythrocytes. J Exp Biol 203:3025–3031

    Article  CAS  PubMed  Google Scholar 

  78. Silveira-Coffigny R, Prieto-Trujillo A, Ascencio-Valle F (2004) Effects of different stressors in haematological variables in cultured Oreochromis aureus S. Comp Biochem Physiol 139C:245–250

    CAS  Google Scholar 

  79. Witeska M, Jezierska B, Wolnicki J (2006) Respiratory and hematological response of Tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquac Int 14:141–152

    Article  CAS  Google Scholar 

  80. Candioti JV, Soloneski S, Larramendy ML (2010) Genotoxic and cytotoxic effects of the formulated insecticide aficida on Cnesterodon decemmaculatus (Jenyns 1842) (Pisces: Poecillidae). Mutat Res 703:180–186

    Article  CAS  PubMed  Google Scholar 

  81. Stalin A, Suganthi P, Mathivani S, Paray BA, Al-Sadoon MK, Gokula V, Musthafa MS (2019) Impact of chlorpyrifos on behavior and histopathological indices in different tissues of freshwater fish Channa punctatus (Bloch). Environ Sci Pollut Res 26:17623–11763

    Article  CAS  Google Scholar 

  82. Peebua P, Kruatrachuea M, Pokethitiyooka P, Kosiyachinda P (2006) Histological effects of contaminated sediments in Mae Klong river tributaries, Thailand, on Nile tilapia, Oreochromis niloticus. Sci Asia 32:143–150

    Article  CAS  Google Scholar 

  83. Vinodhini R, Narayanan M (2009) Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpioL. (Common Carp). Int J Environ Res 3:95–100

  84. Paruruckumani PS, Rajan AM, Ganapiriya V, Kumarasamy PK (2015) Bioaccumulation and ultrastructural alterations of gill and liver in Asian sea bass, Lates calcarifer (Bloch) in sublethal copper exposure. Aquat Living Resour 28:33–44

    Article  CAS  Google Scholar 

  85. Triebskorn R, Telcean I, Casper H, Farkas A, Sandu C (2008) Monitoring pollution in River Mures, Romania, part II: metal accumulation and histopathology in fish. Environ Monit Assess 141:177–188

    Article  CAS  PubMed  Google Scholar 

  86. Marina MP, Martinez BR (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336

    Article  Google Scholar 

  87. Cengiz EI, Unlu E (2003) Histopathology of gills in mosquito fish, Gambusia affinis after long-term exposure to sublethal concentrations of malathion. J Environ Sci Health A 38:581–589

    Article  CAS  Google Scholar 

  88. Bernet D, Schmidt-Posthaus H, Wahli T, Burkhardt-Holm P (2004) Histological alterations in fish. Hydrobiologia 524:53–66

    Article  Google Scholar 

  89. Van Dyk JC, Marchand MJ, Smit NJ, Pieterse GM (2009) A histologybased fish health assessment of four commercially and ecologically important species from the Okavango Delta panhandle, Botswana. Afr J Aquat Sci 34:273–282

    Article  Google Scholar 

  90. Roberts JR, Rodgers DW, Baily JR, Rorke MA (1978) Polychlorinated biphenyls: biological criteria for an assessment of their effects on environmental quality. Nat Res Council of Canada, Publ No NRCC 16077, Ottawa

  91. Fernandes C, Fontaínhas-Fernandes A, Rocha E, M Salgado MA (2008) Monitoring pollution in Esmoriz–Paramos lagoon, Portugal: Liver histological and biochemical effects in Liza saliens. Environ Monit Assess 145 (1–3):315–322

  92. Olojo EAA, Olurin KB, Mbaka G, Oluwemimio AD (2005) Histopathology of the gill and liver tissues of the African catfish, Clarias gariepinus exposed to lead. Afr J Biotechnol 4:117–122

    CAS  Google Scholar 

  93. Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P, Fontaínhas-Fernandes A (2007) Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui Vet Bras 27:103–109

    Article  Google Scholar 

  94. Carrola J, Fontainhas-Fernandes A, Matos P, Rocha E (2009) Liver histopathology in brown trout (Salmotrutta fario) from the Tinhela River, subjected to mine drainage from the abandoned Jales Mine (Portugal). Bull Environ Contam Toxicol 83:35–41

    Article  CAS  PubMed  Google Scholar 

  95. Velcheva I, Tomova E, Arnaudova D, Arnaudov A (2010) Morphological variations on gill and liver of freshwater fish from dam lake “StudenKladenetes”. Bulg J Agric Sci 16:364–368

    Google Scholar 

  96. Bilal A, Qureshi TA, Susan M, Pinky K, Rumysa K (2011) Effect of cadmium chloride on the histoarchitecture of liver and kidney of a freshwater catfish, Clarias batrachus. Int J Environ Sci 2:531–536

    Google Scholar 

  97. Kaptaner B, Kankaya E, Dogan A, Celik I (2014) Histopathology and oxidative stress in the liver of Chalcalburnus tarichi living in lake Van, Turkey. Life Sci J 11:66–77

  98. Mohamed FA (2001) Impacts of environmental pollution in the southern region of Lake Manzalah, Egypt, on the histological structures of the liver and intestine of Oreochromis niloticus and Tilapia zillii. J Egypt Acade Soc Environ Dev 2:25–42

    Google Scholar 

  99. Abdel-warith AA, Younis EM, Al-asgah NA, Wahbi OM (2011) Effect of zinc toxicity on liver histology of Nile tilapia, Oreochromis niloticus. Sci Res Essays 6:3760–3769

    Article  CAS  Google Scholar 

  100. Ortiz JB, De Canales MLG, Sarasquete C (2003) Histopathological changes induced by lindane (HCH) in various organs of fishes. Sci Mar 67:53–61

    Article  CAS  Google Scholar 

  101. Kirubagaran R, Joy KP (1988) Toxic effects of mercuric chloride, methylmercuric chloride and emisan 6 (an organic mercurial fungicide) on ovarian recrudescence in the catfish Clarias barachus (L.). Bull Environ Contam Toxicol 41:902–909

    Article  CAS  PubMed  Google Scholar 

  102. Murugan V, Selvanayagam M, Cengiz EI, Unlu E (2007) The effects of fenvalerate on different tissues of freshwater fish Cirrhinus mrigala. J Environ Sci Health Part B 42:157–163

    Article  CAS  Google Scholar 

  103. Hontela A (1998) Interrenal dysfunction in fish from contaminated sites: in vivo and in vitro assessment. Environ Toxicol Chem 17:44–48

    Article  CAS  Google Scholar 

  104. Levesque H, Dorval J, Van Der Kraak G, Campbell PGC, Hontela A (2003) Hormonal, morphological and physiological responses of yellow perch (Perca flavescens) to chronic environmental metal exposure. J Toxicol Environ Health 66:657–676

  105. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solutions. J Phys Chern Ref Data 17:513–886

  106. Abbas HHH, Mahmoud HM, Miller JD (2007) Vitamin C and cadmium toxicity in fish Oreochromis niloticus. Online J Vet Res 11:54–74

Download references

Acknowledgments

We are really grateful to Rayeda Jannat for her help in sampling and technical assistance.

Funding

This study was supported by the grants from the NATP-II, Bangladesh Agricultural Research Council (CRG-364) and Ministry of Education of Bangladesh (2017/503/MoE) to the corresponding author (Md. Shahjahan).

Author information

Authors and Affiliations

Authors

Contributions

Suchana, Ahmed, and Islam performed the experiments and collected data. Rahman and Rohani drafted the manuscript. Ferdusi assisted in data collection. Ahmmad, Fatema, and Badruzzaman were assisted in data analysis and edited the manuscript. Md. Shahjahan assisted in the experimental design and edited the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Md Shahjahan.

Ethics declarations

Ethics Approval

The experimental procedures followed the guidance approved by the animal care and use committee of Bangladesh Agricultural University, Mymensingh (Approval Number: BAU-FoF/2019/007).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchana, S.A., Ahmed, M.S., Islam, S.M.M. et al. Chromium Exposure Causes Structural Aberrations of Erythrocytes, Gills, Liver, Kidney, and Genetic Damage in Striped Catfish Pangasianodon hypophthalmus. Biol Trace Elem Res 199, 3869–3885 (2021). https://doi.org/10.1007/s12011-020-02490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02490-4

Keywords

Navigation