Skip to main content
Log in

Copper Nanoparticles as Growth Promoter, Antioxidant and Anti-Bacterial Agents in Poultry Nutrition: Prospects and Future Implications

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is a vital trace mineral involved in many physiological functions of the body. In the poultry industry, copper sulfate is being used as a major source of Cu. Copper in the bulk form is less available in the body, and much of its amount excreted out with feces causing environmental pollution and economic loss. The application of nanotechnology offers promise to address these issues by making nanoparticles. Copper nanoparticles (Cu-NP) are relatively more bioavailable due to their small size and high surface to volume ratio. Although, there is limited research on the use of Cu-NP in the poultry industry. Some researchers have pointed out the importance of Cu-NP as an effective alternative of chemical, anti-bacterial agents, and growth promoters. The effect of Cu-NP depends on their size, dose rate and the synthesis method. Apart from there, high bioavailability Cu-NP exhibited positive effects on the immunity of the birds. However, some toxic effects of Cu-NP have also been reported. Further investigations are essentially required to provide mechanistic insights into the role of Cu-NP in the avian physiology and their toxicological properties. This review aims to highlight the potential effects of Cu-NP on growth, immune system, antioxidant status, nutrient digestibility, and feed conversion ratio in poultry. Moreover, we have also discussed the future implications of Cu-NP as a growth promoter and alternative anti-bacterial agents in the poultry industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Swiątkiewicz S, Arczewska-włosek A, Jozefiak DJ (2014) The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. Worlds Poult Sci J 70:475–486. https://doi.org/10.1017/S0043933914000531

    Article  Google Scholar 

  2. Festa RA, Thiele D (2011) Copper: an essential metal in biology. Curr Biol 21:877–883. https://doi.org/10.1016/j.cub.2011.09.040

    Article  CAS  Google Scholar 

  3. Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting atpases. Physiol Rev 87:1011–1046. https://doi.org/10.1152/physrev.00004.2006

    Article  CAS  PubMed  Google Scholar 

  4. Wapnir RA (1998) Copper absorption and bioavailability. Am J Clin Nutr 67(suppl):1054–1060

    Article  Google Scholar 

  5. Scott A, Vadalasetty KP, Chwalibog A, Sawosz E (2018) Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev 7:69–93. https://doi.org/10.1515/ntrev-2017-0159

    Article  CAS  Google Scholar 

  6. Bao Y, Choct M (2009) Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Anim Prod Sci 49:269–282. https://doi.org/10.1071/EA08204

    Article  CAS  Google Scholar 

  7. Pang Y, Patterson J, Applegate T (2009) The influence of copper concentration and source on ileal microbiota. Poult Sci 88:586–592. https://doi.org/10.3382/ps.2008-00243

    Article  CAS  PubMed  Google Scholar 

  8. Joshua PP, Valli C, Balakrishnan V (2016) Effect of in ovo supplementation of nano forms of zinc, copper and selenium on post-hatch performance of broiler chicken. Vet World 9:287–294. https://doi.org/10.14202/vetworld.2016.287-294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jóźwik A, Marchewka J, Strzałkowska N, Horbańczuk J, Szumacher-strabel M, Cieślak A, Lipińska-palka P, Józefiak D, Kamińska A, Atanasov A (2018) The effect of different levels of Cu, Zn and Mn nanoparticles in hen turkey diet on the activity of aminopeptidases. Molecules 23:1150–1158. https://doi.org/10.3390/molecules23051150

    Article  CAS  PubMed Central  Google Scholar 

  10. Ognik K, Stępniowska A, Aholewińska E, Kozłowski K (2016) The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult Sci 95:2045–2051. https://doi.org/10.3382/ps/pew200

    Article  CAS  PubMed  Google Scholar 

  11. Scott A, Vadalasetty KP, Lukasiewicz M, Jaworski S, Wierzbicki M, Chwalibog A, Sawosz E (2017) Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. J Anim Physiol Anim Nutr 102:364–373. https://doi.org/10.1111/jpn.12754

    Article  CAS  Google Scholar 

  12. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164. https://doi.org/10.1016/j.tifs.2016.06.008

    Article  CAS  Google Scholar 

  13. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333. https://doi.org/10.1007/s11051-010-9911-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vinus, Sheoran N (2017) Role of nanotechnology in poultry nutrition. Int J Pure Appl Biosci 5:1237–1245. https://doi.org/10.18782/2320-7051.5948

    Article  Google Scholar 

  15. Raje K, Ojha S, Mishra A, Munde V, Rawat C, Chaudhary SK (2018) Impact of supplementation of mineral nano particles on growth performance and health status of animals: a review. J Entomol Zool Stud 6:1690–1694

    Google Scholar 

  16. Roco MC, Williams R, Alivisatos P (1999) Nanotechnology research directions: Iwgn workshop report. Vision for nanotechnology r&d in the next decade, journal, (National Science and technology Councilarlington VA). https://doi.org/10.21236/ada418616

  17. Warad H, Dutta J (2005) Nanotechnology for agriculture and food systems: a view. Proc. of the 2nd international conference on innovations in food processing technology and engineering, Bangkok

  18. Gopi M, Pearlin B, Kumar RD, Shanmathy M, Prabakar G (2017) Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int J Pharm 13:724–731. https://doi.org/10.3923/ijp.2017.724.731

    Article  CAS  Google Scholar 

  19. Uniyal S, Dutta N, Raza M, Jaiswal S, Sahoo J, Ashwin KJ (2017) Application of nano minerals in the field of animal nutrition: a review. Bull Environ Pharm Life Sci 6:4–8

    Google Scholar 

  20. Gangadoo S, Dinev I, Chapman J, Hughes RJ, Van TTH, Moore RJ, Stanley DJ (2018) Selenium anoparticles in poultry feed modify gut microbiota and increase abundance of faecalibacterium prausnitzii. Appl Microbiol Biotechnol 102:1455–1466. https://doi.org/10.1007/s00253-017-8688-4

    Article  CAS  PubMed  Google Scholar 

  21. Richards JD, Zhao J, Harrell RJ, Atwell CA, Dibner JJ (2010) Trace mineral nutrition in poultry and swine. Asian Australas J Anim Sci 23:1527–1534. https://doi.org/10.5713/ajas.2010.r.07

    Article  CAS  Google Scholar 

  22. Hill EK, Li J (2017) Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol 8:1–13. https://doi.org/10.1186/s40104-017-0157-5

    Article  CAS  Google Scholar 

  23. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hartemann P, Hoet P, Proykova A, Fernandes T, Baun A, De Jong W, Filser J, Hensten A, Kneuer C, Maillard JY (2015) Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today 18:122–123. https://doi.org/10.1016/j.mattod.2015.02.014

    Article  Google Scholar 

  25. Gupta V, Gupta AR, Kant V (2013) Synthesis, characterization and biomedical application of nanoparticles. Forensic Sci Int 1:167–174. https://doi.org/10.5567/sciintl.2013.167.174

    Article  CAS  Google Scholar 

  26. Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloid Surf B: Biointerfaces 96:50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  27. Rajendran D, Thulasi A, Jash S, Selvaraju S, Rao S (2013) Synthesis and application of nano minerals in livestock industry. Animal Nutrition & Reproductive Physiology (Recent Concepts). Satish Serial Publishing House, Delhi, India, pp 517–530

    Google Scholar 

  28. Khandel P, Yadaw RK, Soni DR, Kanwar L, Shahi SK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostructure Chem 8:217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  29. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He NJ (2007) Biosynthesis of silver and gold nanoparticles by novel sundried cinnamomum camphora leaf. Nanotechnology 18:105104–105115. https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  30. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. https://doi.org/10.2174/157341308784340804

    Article  CAS  Google Scholar 

  31. Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson KJ (2012) Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35. https://doi.org/10.3109/17435390.2011.552810

    Article  CAS  PubMed  Google Scholar 

  32. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110. https://doi.org/10.1016/j.toxlet.2007.09.015

    Article  CAS  PubMed  Google Scholar 

  33. Soomro RA, Sherazi SH, Memon N, Shah M, Kalwar N, Hallam KR, Shah A (2014) Synthesis of air stable copper nanoparticles and their use in catalysis. Adv Mater Lett 5:191–198. https://doi.org/10.5185/amlett.2013.8541

    Article  CAS  Google Scholar 

  34. Mamonova I, Matasov M, Babushkina I, Losev O, Chebotareva YG, Gladkova E, Borodulina YV (2013) Study of physical properties and biological activity of copper nanoparticles. Nanotechnol Russ 8:303–308. https://doi.org/10.1134/s1995078013030142

    Article  Google Scholar 

  35. Mullally AM, Vogelsang GB, Moliterno AR (2004) Wasted sheep and premature infants: the role of trace metals in hematopoiesis. Blood Rev 18:227–234. https://doi.org/10.1016/s0268-960x(03)00067-5

    Article  PubMed  Google Scholar 

  36. Magaye R, Zhao J, Bowman L, Ding MJ (2012) Genotoxicity and carcinogenicity of cobalt, nickel and copper based nanoparticles. Exp Ther Med 4:551–561. https://doi.org/10.3892/etm.2012.656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scott A, Vadalasetty KP, Sawosz E, Lukasiewicz M, Vadalasetty RKP, Jaworski S, Chwalibog A (2016) Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim Feed Sci Technol 220:151–158. https://doi.org/10.1016/j.anifeedsci.2016.08.009

    Article  CAS  Google Scholar 

  38. Camacho-flores B, Martínez-alvarez O, Renas-arrocena M, Garcia-contreras R, Argueta-Figueroa L, de la Fuente-Hernández J, Acosta-Torres L (2015) Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J Nanomater 16:1–10. https://doi.org/10.1155/2015/415238

    Article  Google Scholar 

  39. Kvitek L, Prucek R, Panacek A, Soukupovaet J (2019) Physicochemical aspects of metal nanoparticle preparation, in silver nanoparticles- health and safety. IntechOpen

  40. Abdussalam-Mohammed W (2020) Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Avd J Chem A 3:192–210. https://doi.org/10.33945/SAMI/AJCA.2020.2.8

    Article  CAS  Google Scholar 

  41. Adekoya JA, Ogunniram KO, Siyanbola TO, Dare EO, Revaprasadu N (2018) Band structure, morphology, functionality, and size-dependent properties of metal nanoparticles, in Noble and precious metals: properties, nanoscale effects and applications. IntechOpen. p. 15. https://doi.org/10.5772/intechopen.72761

  42. Guo D, Xie G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:013001. https://doi.org/10.1088/0022-3727/47/1/013001

    Article  CAS  Google Scholar 

  43. Andersson MS, Mathieu R, Normile PS, Lee SS, Singh G, Nordblad P, De Toro JA (2017) Magnetic properties of nanoparticle compacts with controlled broadening of the 118 particle size distribution. Phys Rev B 95:184431. https://doi.org/10.1103/physrevb.95.184431

    Article  CAS  Google Scholar 

  44. Panáček A, Prucek R, Hrbáč R, Nevečná T, Šteffková J, Zbořil R, Kvítek L (2014) Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity. Chem Mater 26:1332–1339. https://doi.org/10.1021/cm400635z

    Article  CAS  Google Scholar 

  45. Cuenya BR, Behafarid F (2015) Nanocatalysis: size-and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 70:135–187. https://doi.org/10.1016/j.surfrep.2015.01.001

    Article  CAS  Google Scholar 

  46. Suchomel P, Kvitek L, Prucek R, Panacek A, Halder A, Vajda S, Zboril R (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22976-5

    Article  CAS  Google Scholar 

  47. Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136. https://doi.org/10.1016/j.ccr.2015.01.002

    Article  CAS  Google Scholar 

  48. Chaturvedi S, Dave PN, Shah N (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325. https://doi.org/10.1016/j.jscs.2011.01.015

    Article  CAS  Google Scholar 

  49. Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22:1370. https://doi.org/10.3390/molecules22081370

    Article  CAS  PubMed Central  Google Scholar 

  50. Gatoo MA, Naseem S, Arfat MY, Mahmood D, Qasim K, Zubair (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/498420

    Article  CAS  Google Scholar 

  51. Foroozandeh P, Aziz AA (2018) Insight into cellular uptake and intracellular trafficking of 130 nanoparticles. Nanoscale Res Lett 13:339. https://doi.org/10.1186/s11671-018-2728-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Makarski B, Zadura A (2006) The effect of copper chelates with lysine on the level of hematological and biochemical components of Turkey blood. Ann Univ Mariae Curie Sklodowska Sect EE Zoo 24:357–363

    Google Scholar 

  53. Sharma M, Joshi C, Pathak N, Kaur H (2005) Copper status and enzyme, hormone, vitamin and immune function in heifers. Res Vet Sci 79:113–123. https://doi.org/10.1016/j.rvsc.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  54. Mroczek-sosnowska N, Batorska M, Lukasiewicz M, Wnuk A, Sawosz E, Jaworski S, Niemiec J (2013) Effect of nanoparticles of copper and copper sulfate administered in ovo on hematological and biochemical blood markers of broiler chickens. Annals of Warsaw University of Life Sciences-SGGW. Anim Sci 52:141–149

    CAS  Google Scholar 

  55. Mcdowell LR (1992) Mineral in animal and human nutrition. Academic Press Inc, San Diego, pp 265–275

    Google Scholar 

  56. Cholewińska OK, Fotschki B, Zduńczyk Z, Juśkiewicz J (2018) Comparison of the effect of dietary copper nanoparticles and one copper (ii) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One 13:e0197083. https://doi.org/10.1371/journal.pone.0197083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karimi A, Sadeghi G, Vaziry A (2011) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J Appl Poult Res 20:203–209. https://doi.org/10.3382/japr.2010-00290

    Article  CAS  Google Scholar 

  58. Luo X, Ji F, Lin Y, Steward F, Lu L, Liu B, Yu S (2005) Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult Sci 84:888–893. https://doi.org/10.1093/ps/84.6.888

    Article  CAS  PubMed  Google Scholar 

  59. Marchetti M, Ashmead HD, Tossani N, Marchetti S, Ashmead SD (2000) Comparison of the rates of vitamin degradation when mixed with metal sulphates or metal amino acid chelates. J Food Compos Anal 13:875–884. https://doi.org/10.1006/jfca.2000.0917

    Article  CAS  Google Scholar 

  60. Banks K, Thompson K, Rush J, Applegate T (2004) Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult Sci 83:990–996. https://doi.org/10.1093/ps/83.6.990

    Article  CAS  PubMed  Google Scholar 

  61. Zaboli K, Aliarabi H, Bahari AA, Abbas AKR (2013) Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: a study on in iranian angora (markhoz) goat kids. J Pharm Health Sci 2:19–26

    Google Scholar 

  62. Civardi C, Schubert M, Fey A, Wick P, Schwarze FW (2015) Micronized copper wood preservatives: efficacy of ion, nano, and bulk copper against the brown rot fungus rhodonia placenta. PLoS One 10:e0142578. https://doi.org/10.1371/journal.pone.0142578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Hagan DT (1996) The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat 189:477–482

    PubMed  PubMed Central  Google Scholar 

  64. Al-bairuty GA, Boyle D, Henry TB, Handy RD (2016) Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (oncorhynchus mykiss) at low ph: physiology and metal accscotumulation. Aquat Toxicol 174:188–198. https://doi.org/10.1016/j.aquatox.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  65. Mroczek-sosnowska N, Sawosz E, Vadalasetty K, Lukasiewicz M, Niemiec J, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A (2015) Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int J Mol Sci 16:4838–4849. https://doi.org/10.3390/ijms16034838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hillery A, Jani P, Florence A (1994) Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 2:151–156. https://doi.org/10.3109/10611869409015904

    Article  CAS  PubMed  Google Scholar 

  67. Wang C, Wang M, Ye S, Tao W, Du Y (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90:2223–2228. https://doi.org/10.3382/ps.2011-01511

    Article  CAS  PubMed  Google Scholar 

  68. Mroczek-sosnowska N, Lukasiewicz M, Adamek D, Kamaszewski M, Niemiec J, Wnuk-gnich A, Scott A, Chwalibog A, Sawosz E (2017) Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Arch Anim Nutr 71:327–332. https://doi.org/10.1080/1745039x.2017.1331619

    Article  CAS  PubMed  Google Scholar 

  69. Mroczek-sosnowska N, Lukasiewicz M, Wnuk A, Sawosz E, Niemiec J, Skot A, Jaworski S, Chwalibog A (2016) In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. J Sci Food Agric 96:3058–3062. https://doi.org/10.1002/jsfa.7477

    Article  CAS  PubMed  Google Scholar 

  70. Miroshnikov SA, Yausheva EV, Sizova EA, Miroshnikova EP (2015) Comparative assessment of effect of copper nano-and microparticles in chicken. Orient J Chem 31:2327–2336. https://doi.org/10.13005/ojc/310461

    Article  CAS  Google Scholar 

  71. Yang Y, Guo J, Yoon S, Jin Z, Choi J, Piao X, Kim B, Ohh S, Wang M, Chae B (2009) Early energy and protein reduction: effects on growth, blood profiles and expression of genes related to protein and fat metabolism in broilers. Br Poult Sci 50:218–227. https://doi.org/10.1080/00071660902736706

    Article  CAS  PubMed  Google Scholar 

  72. Kozłowski K, Jankowski J, Otowski K, Zduńczyk Z, Ognik K (2018) Metabolic parameters in young turkeys fed diets with different inclusion levels of copper nanoparticles. Pol J Vet Sci 21:245–253. https://doi.org/10.24425/119043

    Article  CAS  PubMed  Google Scholar 

  73. Sawosz E, Lukasiewicz M, Lozicki A, Sosnowska M, Jaworski S, Niemiec J, Scott A, Jankowski J, Józefiak D, Chwalibog A (2018) Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch Anim Nutr 72:396–406. https://doi.org/10.1080/1745039x.2018.1505146

    Article  CAS  PubMed  Google Scholar 

  74. Sarvestani S, Rezvani MR, Zamiri MJ, Shekarforoush SH, Atashi H, Mosleh N (2016) The effect of nanocopper and mannan oligosaccharide supplementation on nutrient digestibility and performance in broiler chickens. J Vet Res 71:153–161 https://jvr.ut.ac.ir/article_57912.html

    Google Scholar 

  75. Pineda L, Sawosz E, Vadalasetty K, Chwalibog A (2013) Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim Feed Sci Technol 186:125–129. https://doi.org/10.1016/j.anifeedsci.2013.08.012

    Article  CAS  Google Scholar 

  76. Ognik K, Sembratowicz I, Cholewińska E, Jankowski J, Kozłowski K, Juśkiewicz J, Zduńczyk Z (2018) The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim Sci J 89:579–588. https://doi.org/10.1111/asj.12956

    Article  CAS  PubMed  Google Scholar 

  77. Nassiri M, Ahmadi F (2015) Effects of copper oxide nanoparticles on the growth performance, antioxidant enzymes activity and gut morphology of broiler chickens. Int J Agric Biosyst Eng 9:1–11

    Google Scholar 

  78. Ghasemipoor M, Zolghadri S (2014) The effect of copper oxide nanoparticles as feed additive on some the blood proteins of broiler chickens. Mol Biol Commun 3:144

    Google Scholar 

  79. Payvastegan S, Farhoomand P, DelfanI N (2013) Growth performance, organ weights and, blood parameters of broilers fed diets containing graded levels of dietary canola meal and supplemental copper. J Poult Sci 50:354–363. https://doi.org/10.2141/jpsa.0130006

    Article  CAS  Google Scholar 

  80. Zahedi M, Ghalehkandi J, Ebrahimnezhad Y, Emami F (2013) Effects of different levels of copper sulfate on blood biochemical traits in japanese quail (coturnix coturnix japonica). Int J Biosci 3:221–226. https://doi.org/10.12692/ijb/3.12.221-226

    Article  CAS  Google Scholar 

  81. Bakalli RI, Pesti GM, Ragland WL, Konjufca V (1995) Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poult Sci 74:360–365. https://doi.org/10.3382/ps.0740360

    Article  CAS  PubMed  Google Scholar 

  82. Kim S, Chao PY, Allen K (1992) Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J 6:2467–2471. https://doi.org/10.1096/fasebj.6.7.1563598

    Article  CAS  PubMed  Google Scholar 

  83. Gonzales-eguia A, Fu CM, Lu FY, Lien TF (2009) Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest Sci 126:122–129. https://doi.org/10.1016/j.livsci.2009.06.009

    Article  Google Scholar 

  84. Rahman Z, Besbasi F, Afan A, Bengali E, Zendah M, Hilmy M, Mukhtar M, Jaspal S, Aslam NJ (2001) Effects of copper supplement on haematological profiles and broiler meat composition. Int J Agric Biol 3:203–205

    Google Scholar 

  85. Ohimain EI, Ofongo RT (2012) The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review. Int J Anim Vet Adv 4:135–143

    CAS  Google Scholar 

  86. Anwar M, Awais M, Akhtar M, Navid M, Muhammad F (2019) Nutritional and immunological effects of nano-particles in commercial poultry birds. Worlds Poult Sci J 75:261–272. https://doi.org/10.1017/s0043933919000199

    Article  Google Scholar 

  87. Yazdankhah S, Rudi K, Bernhoft A (2014) Zinc and copper in animal feed–development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis 25:1–7. https://doi.org/10.3402/mehd.v25.25862

    Article  CAS  Google Scholar 

  88. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283

    PubMed  PubMed Central  Google Scholar 

  89. Duffy LL, Osmond-mcleod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of salmonella and campylobacter. Food Control 92:293–300. https://doi.org/10.1016/j.foodcont.2018.05.008

    Article  CAS  Google Scholar 

  90. Dealba-montero I, Guajardo-pacheco J, Morales-sánchez E, Araujo-martínez R, Loredo-becerra G, Martínez-castañón GA, Ruiz F, Compeán JM (2017) Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorg Chem Appl 2017:1–6. https://doi.org/10.1155/2017/1064918

    Article  CAS  Google Scholar 

  91. Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. J Bionanosci 4:82–86. https://doi.org/10.1166/jbns.2010.1035

    Article  CAS  Google Scholar 

  92. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. https://doi.org/10.1007/s11671-009-9264-3

    Article  CAS  Google Scholar 

  93. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of escherichia coli and bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  94. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, pseudomonas putida kt2440. J Biol Eng 3:9. https://doi.org/10.1186/1754-1611-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Villanueva ME, Diez AM, González JA, Pérez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8:16280–16288. https://doi.org/10.1021/acsami.6b02955.s001

    Article  CAS  PubMed  Google Scholar 

  96. Dobrovolný K, Ulbrich P, Svecová M, Rimpelová S, Malinčík J, Kohout M, Svoboda J, Bartůněk V (2017) Copper nanoparticles in glycerol-polyvinyl alcohol matrix: in situ preparation, stabilisation and antimicrobial activity. J Alloys Compd 697:147–155. https://doi.org/10.1016/j.jallcom.2016.12.144

    Article  CAS  Google Scholar 

  97. Rakhmetova A, Alekseeva T, Bogoslovskaya O, Leipunskii I, Ol’khovskaya I, Zhigach A, Glushchenko N (2010) Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnol Russ 5:271–276. https://doi.org/10.1134/s199507801003016x

    Article  Google Scholar 

  98. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  99. Rudramurthy GR, Swam MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  PubMed Central  Google Scholar 

  100. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of cuo and zno nanoparticles. Materials 5:2850–2871. https://doi.org/10.3390/ma5122850

    Article  CAS  PubMed Central  Google Scholar 

  101. Pramanik A, Pramanik S, Pramanik P (2017) Copper based nanoparticle: a way towards future cancer therapy. Global J Nanomed 1:1–3

    Google Scholar 

  102. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  103. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101. https://doi.org/10.1088/0957-4484/25/13/135101

    Article  CAS  PubMed  Google Scholar 

  104. Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Invent 3:6–28

    Google Scholar 

  105. Xu J, Ji W, Shen Z, Tang S, Ye X, Jia D, Xin X (1999) Preparation and characterization of cuo nanocrystals. J Solid State Chem 147:516–519. https://doi.org/10.1006/jssc.1999.8409

    Article  CAS  Google Scholar 

  106. Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959. https://doi.org/10.1590/s0103-50532010000600002

    Article  Google Scholar 

  107. Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160. https://doi.org/10.3109/17435390903337693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Højberg O, Canib N, Poulsen HD, Hedemann MS, Jensen BB (2005) Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 71:2267–2277. https://doi.org/10.1128/aem.71.5.2267-2277.2005

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shahbazi MA, Hamidi M, Mäkilä EM, Zhangh, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34:7776–7789. https://doi.org/10.1016/j.biomaterials.2013.06.052

    Article  CAS  PubMed  Google Scholar 

  110. Zhao J, Riediker M (2014) Detecting the oxidative reactivity of nanoparticles: a new protocol for reducing artifacts. J Nanopart Res 16:1–13. https://doi.org/10.1007/s11051-014-2493-0

    Article  CAS  Google Scholar 

  111. Jia HY, Liu Y, Zhang XJ, Han L, Du LB, Tian Q, Xc YC (2008) Potential oxidative stress of gold nanoparticles by induced-no releasing in serum. J Am Chem Soc 131:40–41. https://doi.org/10.1021/ja808033w

    Article  CAS  Google Scholar 

  112. Wang T, Long X, Cheng Y, Liu Z, Yan S (2014) The potential toxicity of copper nanoparticles and copper sulphate Jia on juvenile epinephelus coioides. Aquat Toxicol 152:96–104. https://doi.org/10.1016/j.aquatox.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  113. Suttle N (2010) Mineral nutrition of livestock, 4th edn. Cab International, Wallingford. https://doi.org/10.1079/9781845934729.0039

    Book  Google Scholar 

  114. Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz-ul Hassan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Rahman, M.Au., Ahmed, B. et al. Copper Nanoparticles as Growth Promoter, Antioxidant and Anti-Bacterial Agents in Poultry Nutrition: Prospects and Future Implications. Biol Trace Elem Res 199, 3825–3836 (2021). https://doi.org/10.1007/s12011-020-02485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02485-1

Keywords

Navigation