Skip to main content
Log in

Evaluation of the Mineral Content in Forage Palm (Opuntia ficus-indica Mill and Nopalea cochenillifera) Using Chemometric Tools

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An acid digestion procedure of the forage palm (Opuntia ficus-indica Mill and Nopalea cochenilifera) employing a closed digestor block applied full 24 factorial design was optimized. The optimal conditions were HNO3 5.0 mol L−1, 2.0 mL of H2O2 30% m m−1, 120 min of digestion, and heating temperature of 180 °C. The certified reference materials of apple leaves (NIST 1515) and tomato leaves (Agro C1003a) were used to evaluate the accuracy of the analytical method. The concentrations of the macroelements were (in % m m−1) Ca (1.32–3.71), K (0.88–5.29), Mg (0.70–1.78), and P (0.03–0.32). For the microelements, the concentrations (in μg g−1) obtained were As (< 1.39), Cd (< 0.10), Cu (< 0.17–5.6), Fe (8.0–50.2), Na (< 1.85), Sr (41–348), and Zn (17.3–159). Essential elements such as Ca, Mg, and Zn made good contributions to daily intake, being an alternative to meet the nutritional needs of these macroelements and microelements in humans. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to evaluate the results, obtaining trends between the samples in relation to their mineral composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marengo JA, Alves LM, Beserra EA, Lacerda FF (2011) Variabilidade e mudanças climáticas no semiárido brasileiro. In: Medeiros SS, Gheyi HR, Galvão CO, Paz VPS (eds) Recursos hídricos em regiões áridas e semiáridas. Instituto Nacional do Semiárido, Campina Grande, pp 383–416

    Google Scholar 

  2. Rocha JDS (2012) Palma forrageira no Nordeste do Brasil: estado da arte. Embrapa Caprinos e Ovinos-Documentos (INFOTECA-E) 40 p.: il. —(Documentos / Embrapa Caprinos e Ovinos, ISSN 1676-7659; 106). Available from: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/979108/1/DOC106.pdf

  3. Da Silva JA, Bonomo P, Donato SL, Pires AJ, Rosa RC, Donato PE (2012) Composição mineral em cladódios de palma forrageira sob diferentes espaçamentos e adubações química. Rev Bras Ciênc Agrár (Online) 7:866–875

    Google Scholar 

  4. Brazil (2013) Ministry of Agriculture, Livestock and Food Supply. Informativo sobre a Estiagem no Nordeste - n° 40, 30/07/2013. Available from: http://www.agricultura.gov.br/assuntos/politica-agricola/combate-a-seca-1/arquivos-combate-a-seca/40.pdf. <Accessed 09/12/2019>

  5. Cardoso DB, de Carvalho FFR, de Medeiros GR, Guim A, Cabral AMD, Véras RML, dos Santos KC, Dantas LCN, de Oliveira Nascimento AG (2019) Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Anim Feed Sci Technol 247:23–31

    Article  Google Scholar 

  6. Brazil (2019) Secretary Of Agricultural Policy - Portal N° 5, of 13 of february of 2019. Available from: http://www.agricultura.gov.br/assuntos/riscosseguro/riscoagropecuario/portarias/safravigente/alagoas/word/PORTN05PALMAFORRAGEIRAAL.pdf. <Accessed 09/12/2019>

  7. Salehi E, Emam-Djomeh Z, Askari G, Fathi M (2019) Opuntia ficus indica fruit gum: extraction, characterization, antioxidant activity and functional properties. Carbohydr Polym 206:565–572

    Article  CAS  Google Scholar 

  8. Voltolini T, de Miranda JEC, dos Santos RD, Muniz E, Fernandes E, de Magalhaes VMA (2016) Plantio e manejo da palma forrageira no Semiárido: cartilhas elaboradas conforme a metodologia e-Rural. Embrapa Semiárido-Fôlder/Folheto/Cartilha (INFOTECA-E), p. 36

  9. Medina EMD, Rodríguez EMR, Romero CD (2007) Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem 103(1):38–45

    Article  CAS  Google Scholar 

  10. Kelen MEB, Nouhuys IS, Kehl LC, Brack P, Silva DBD (2015) Plantas alimentícias não convencionais (PANCs): hortaliças espontâneas e nativas, 1st edn. Porto Alegre, UFRGS

    Google Scholar 

  11. Brazil (2015) Ministry of Health. Department of Health Care. Department of Primary Care. Alimentos regionais brasileiros / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica. – 2. ed. – Brasília: Ministério da Saúde p. 484: il. Availabre from: http://bvsms.saude.gov.br/bvs/publicacoes/alimentos_regionais_brasileiros_2ed.pdf. <Accessed 24/01/2020>

  12. El Hayek E, El Samrani A, Lartiges B, Kazpard V, Aigouy T (2017) Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite. Environ Pollut 220:779–787

    Article  Google Scholar 

  13. Souza LA, Souza TL, Santana FB, Araujo RGO, Teixeira LS, Santos DCMB, Korn MGA (2018) Determination and in vitro bioaccessibility evaluation of Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P and Zn in linseed and sesame. Microchem J 137:8–14

    Article  CAS  Google Scholar 

  14. Jung MY, Kang JH, Choi YS, Lee JY, Lee JY, Park JS (2019) Analytical features of microwave plasma-atomic emission spectrometry (MP-AES) for the quantitation of manganese (Mn) in wild grape (Vitiscoignetiae) red wines: comparison with inductively coupled plasma-optical emission spectrometry (ICP-OES). Food Chem 274:20–25

    Article  CAS  Google Scholar 

  15. Peixoto RRA, Codo CRB, Sanches VL, Guiraldelo TC, da Silva FF, Ribessi RL, Cadore S (2019) Trace mineral composition of human breast milk from Brazilian mothers. J Trace Elem Med Biol 54:199–205

    Article  Google Scholar 

  16. Krug FJ, Rocha FRP (2016) Métodos de preparo de amostras para análise elementar. EditSBQ – Sociedade Brasileira de Química, São Paulo

    Google Scholar 

  17. Taylor A, Barlow N, Day MP, Hill S, Patriarca M, White M (2017) Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J Anal At Spectrom 32(3):432–476

    Article  CAS  Google Scholar 

  18. Pereira CC, de Souza AO, Oreste EQ, Vieira MA, Ribeiro AS (2018) Evaluation of the use of a reflux system for sample preparation of processed fruit juices and subsequent determination of Cr, Cu, K, Mg, Na, Pb and Zn by atomic spectrometry techniques. Food Chem 240:959–964

    Article  CAS  Google Scholar 

  19. Donati GL, Amais RS, Williams CB (2017) Recent advances in inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 32(7):1283–1296

    Article  CAS  Google Scholar 

  20. Oliveira AC, dos Santos VS, dos Santos DC, Carvalho RDS, Souza AS, Ferreira SLC (2014) Determination of the mineral composition of Caigua (Cyclantherapedata) and evaluation using multivariate analysis. Food Chem 152:619–623

    Article  CAS  Google Scholar 

  21. Dos Santos IF, dos Santos AM, Barbosa UA, Lima JS, dos Santos DC, Matos GD (2013) Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchem J 110:439–443

    Article  Google Scholar 

  22. Gouveia ST, Silva FV, Costa LM, Nogueira ARA, Nóbrega JA (2001) Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Anal Chim Acta 445(2):269–275

    Article  CAS  Google Scholar 

  23. Brazil (2005) CPRM – Geological Service of Brazil. Atlas Digital dos Recursos Hídricos Subterrâneos, 2005. Available from: http://www.cprm.gov.br/publique/Hidrologia/Mapas-e-Publicacoes-173. <Accessed 19/12/2019>

  24. Ferreira SLC, Junior MMS, Felix CSA, da Silva DLF, Santos AS, Neto JHS, de Souza CT, Junior RAC, Souza AS (2019) Multivariate optimization techniques in food analysis–a review. Food Chem 273:3–8

    Article  CAS  Google Scholar 

  25. Souza SO, Pereira TRS, Ávila DVL, Paixão LB, Soares SAR, Queiroz AFS, Pessoa AGG, Korn MGA, Maranhão TA, Araujo RGO (2019) Optimization of sample preparation procedures for evaluation of the mineral composition of fish feeds using ICP-based methods. Food Chem 273:106–114

    Article  CAS  Google Scholar 

  26. Riisom M, Gammelgaard B, Lambert IH, Stürup S (2018) Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods. J Pharm Biomed Anal 158:144–150

    Article  CAS  Google Scholar 

  27. Montaser A, Golightly DW (1992) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  28. Ferreira SLC (2015) Introdução às técnicas de planejamento de experimentos. Editora Vento Leste, Salvador

    Google Scholar 

  29. Derringer G, Suich RJ (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Article  Google Scholar 

  30. Costa VC, Babos DV, Aquino FWB, Virgílio A, Amorim FAC, Pereira-Filho ER (2018) Direct determination of Ca, K and Mg in cassava flour samples by laser-induced breakdown spectroscopy (LIBS). Food Anal Methods 11:1886–1896

    Article  Google Scholar 

  31. Magnusson B (2014) Eurachem guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics, (2nd ed. 2014)

  32. Carter JA, Sloop JT, McSweeney T, Jones BT, Donati GL (2019) Identifying and assessing matrix effect severity in inductively coupled plasma optical emission spectrometry using non-analyte signals and unsupervised learning. Anal Chim Acta 1062:37–46

    Article  CAS  Google Scholar 

  33. Grygo-Szymanko E, Tobiasz A, Walas S (2016) Speciation analysis and fractionation of manganese: review. TrAC Trends Anal Chem 80:112–124

    Article  CAS  Google Scholar 

  34. IUPAC, Internation Union of Pure and Applied Chemistry (1978) Nomenclature, symbols, units and their usage in spectrochemical analysis-III. Analytical flame spectroscopy and associated non-flame procedures. Spectrochim Acta B 33:247–249

    Article  Google Scholar 

  35. Mermet JM, Poussel E (1995) ICP emission spectrometers: analytical figures of merit. Appl Spectrosc 49:12–18

    Article  Google Scholar 

  36. Bizzi CA, Nóbrega JA, Barin JS (2014) Diluted acids in microwave-assisted wet digestion. In: Microwave-assisted sample preparation for trace element analysis, Chapter 6. Elsevier, pp 179–204

  37. Moffet J, Russell G, Lener JP (2011) Evaluation of a novel nebulizer using an inductively coupled plasma optical emission spectrometer. Agilent Technologies Application Note, pp 1–5

  38. Brazil (2016) National Institute of Metrology, Quality and Technology – (Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO); Document DOQ-CGCRE-008, Review 05, August of 2016. Available from: http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf. <Accessed 09/12/2019>

  39. Miller J, Miller JC (2010) Statistics and chemometrics for analytical chemistry, Sixth edn. Pearson Education, p. 297

  40. DalCorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6(10):1770–1788

    Article  CAS  Google Scholar 

  41. Gonçalves ASF, de Oliveira Neto SS, Machado GG (2019) Uso de micronutrientes na agricultura: efeitos e aplicações. Rev Agr Bras 3:1–4

    Google Scholar 

  42. Cunha MDCLE, Dani N, Formoso MLL (2018) A importância do estudo Biogeoquímico na mobilidade dos elementos residuais em ambiente supergênico. Ver Bras Geoc 20(1–4):173–177

    Google Scholar 

  43. Brazil (2020) Brazilian Food Composition Table (TBCA). Universidade de São Paulo (USP). Food Research Center (FoRC). Version 7.1. São Paulo, 2020. Available from: http://www.fcf.usp.br/tbca. <Accessed 24/09/2020>

  44. Brazil (2005) Brazilian National Health Surveillance Agency – (Agência Nacional de Vigilância Sanitária – ANVISA). Resolution n° 269/2005. Available from: http://portal.anvisa.gov.br/documents/33880/2568070/RDC_269_2005.pdf/36ef25bc-80d4-465a-ac85-340587a7b850. <Accessed 15/03/2020>

  45. Santos WPC, Ribeiro NM, Santos DCMB, Korn MGA, Lopes MV (2018) Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil. Food Chem 240:112–122

    Article  CAS  Google Scholar 

  46. Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction Couplin - chapter 7. In: Textbook of medical physiology, 11th edn. Elsiever Saunders Publishing, Philadelphia

  47. Stipanuk MH, Caudill MA (2012) Nutrients: history and definitions - Chapter 1. In: Biochemical, physiological, and molecular aspects of human nutrition-E-book, 3th edn. Elsevier Saunders Publishing, Philadelphia

  48. Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132

    Article  CAS  Google Scholar 

  49. Chen L, Guo Q, Wang Q, Luo C, Chen S, Wen S, Liu L (2020) Association between plasma strontium, a bone-seeking element, and type 2 diabetes mellitus. Clin Nutr 39(7):2151–2157

    Article  CAS  Google Scholar 

  50. Correia PR, Ferreira MM (2007) Reconhecimento de padrões por métodos não supervisionados: explorando procedimentos quimiométricos para tratamento de dados analíticos. Quim Nova 30(2):481–487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB, Brazil), the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brasília, Brazil, Finance Code 001), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), and the Programa de Apoio a Jovens Professores Doutores (PROPESQ/UFBA, Brazil - Edital PROPCI/PROPG n°. 004/2016) for providing grants, fellowships and for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cristina M. B. Santos.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 419 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, F.B., Silveira, H.F.A., Souza, L.A. et al. Evaluation of the Mineral Content in Forage Palm (Opuntia ficus-indica Mill and Nopalea cochenillifera) Using Chemometric Tools. Biol Trace Elem Res 199, 3939–3949 (2021). https://doi.org/10.1007/s12011-020-02484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02484-2

Keywords

Navigation